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Abstract
Samuelsson, O. 2021. Sensor Fault Detection and Process Monitoring in Water Resource 
Recovery Facilities. Uppsala Dissertations from the Faculty of Science and Technology 145. 
270 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-1116-6.

Water resource recovery facilities (WRRFs) operate 24/7 to reduce the environmental impact 
from wastewater on receiving waters. Inaccurate measurements hinder the improvement of 
operations, limits the performance of automatic control, and deteriorate data quality for 
decision support and other purposes. This thesis studied how faults can be detected in 
sensors and impact the treatment process, including aeration diffusers. Simulation studies as 
well as three 6-18 months long pilot and full-scale experiments were conducted. Evidence was 
given for the commonplace problem with biofilm formation, and the consequence of biased 
measurements in two types of dissolved oxygen (DO) sensors. The condition of the energy 
critical aeration diffusers was monitored by combining process models and a tailored 
process disturbance, which subsequently improved the information content in existing 
measurements. The deliberate disturbance approach was also successful in predicting fouling 
and other faults in DO sensors, and further enabled separation of sensor faults from 
process variations. The practicability of several machine learning methods was studied for 
both sensor and process monitoring applications. Probabilistic one-class classification 
methods showed promising for automatically tuning the alarm threshold, although simple 
methods produced similarly good results in many situations. Lack of annotated data limited 
the applicability of the classification methods. For sensor fault detection, this was mitigated 
by using data from sensor maintenance routines. The need for overall good data quality to 
identify deviating measurements was underscored when data reconciliation was applied for 
process monitoring. Reaching a balance between theoretical and practical limitations was 
further pinpointed as a success factor for data reconciliation. Many previously unknown 
disturbances in the sensors and the treatment process were revealed during the experiments 
and resulted in improvement opportunities. A major negative impact from biased sensor 
signals on treatment efficiency was quantified and analysed in simulations, where the drift 
direction appeared to be vital. Knowledge gaps related to current sensor data quality were 
identified and studies were proposed to mitigate the identified shortcomings. Ultimately, the 
findings in this thesis underline the significance of analysing data using fault detection 
methods, which can enable a better overall system understanding and decision support.
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Populärvetenskaplig sammanfattning 

Tillgång till rent vatten är livsviktigt och avgörande för att ett samhälle ska 
fungera. I takt med att förståelsen kring avloppsvattnets miljöpåverkan har 
ökat, så har även reningskraven och tekniken utvecklats. Idag är ett modernt 
reningsverk en processindustri med biotekniska, kemiska och mekaniska pro-
cesser som begränsar utsläpp av näringsämnen (kväve och fosfor), substanser 
som kan leda till syrebrist i sjöar samt i vissa fall även läkemedelsrester. Ett 
reningsverk renar vatten dygnet runt och fel och störningar behöver därför 
snabbt upptäckas och åtgärdas. 

Reglerteknik har varit en viktig komponent för att automatiskt kunna styra 
de alltmer avancerade reningsprocesserna på ett resurseffektivt sätt. Regler-
teknik är dock känsligt för felaktiga mätningar som kan leda till oönskade 
konsekvenser. Felaktiga mätningar döljs inom en regulator och är tyvärr luriga 
att upptäcka.  

Som exempel kan man ta en syrehaltsregulator i den biologiska reningen. 
Normalt så styr regulatorn mot ett målvärde på 2 mg/L i syrehalt. Regulatorn 
utgår från en sensor som mäter syrehalten i reningsverket och justerar lufttill-
förseln så att den önskade syrehalten, eller målvärdet, uppnås. Om nu syre-
sensorn mäter 0,5 mg/L för lite (d.v.s. 1,5 mg/L när det i verkligheten är 2,0 
mg/L) så kommer regulatorn ändå att styra mot (vad den tror är) 2,0 mg/L. 
Den sanna syrehalten kommer då bli 2,5 mg/L vilket kommer vara mindre 
energieffektivt än det önskade målvärdet. Det luriga är att den uppmätta syre-
halten är 2,0 mg/L, vilket är det önskade, trots att mätningen egentligen är 
felaktig. 

Hur fel i flera sensorer samverkar och påverkar reningsfunktionen och 
energiförbrukningen har studerats med hjälp av datorsimuleringar. Typen av 
fel (positivt eller negativt mätfel) och vilken sensor det var fel i visade sig ha 
betydelse för hur stora de negativa konsekvenserna blev. Detta visar på vikten 
av att förstå hur man kan undvika sensorfel samt prioritera de mest kritiska 
sensorerna. 

En stor del av avhandlingens arbete har varit att utveckla metoder som kan 
detektera fel. Utöver sensorfel har detektion av processtörningar och fel på 
den tekniska reningsutrustningen studerats i experiment på Stockholms tre re-
ningsverk i försök under 6–18 månader. Den vanligast orsaken till felaktiga 
sensormätningar är biofilmspåväxt. Detta studerades i detalj och visade att ris-
ken för mätfel varierar i takt med årstidsvariationerna. Biofilmspåväxt kan 
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även minska effektiviteten på luftningsutrustningen, vilket kunde övervakas 
med en av de framtagna metoderna. 

Oavsett tillämpning har tillvägagångssättet varit att analysera data med 
hjälp av olika matematiska modeller. Modeller har använts för att filtrera fram 
den information som avslöjar om det finns ett fel eller inte i den studerade 
sensorn eller processen. En modell kan sägas sätta mätningarna i proportion 
till varandra, där modellen beskriver vår kunskap om mätningarna som mate-
matiska samband. Detta kan till exempel användas för att förstå om en upp-
mätt syrehalt är rimlig, givet den aktuella lufttillförseln och syreförbruk-
ningen. Flera typer av modeller har studerats och visat sig användbara för fel-
detektion. Dels de som enbart använder data och mönster i data för predikt-
ioner (maskininlärning), samt de som även inkluderar kända fysikaliska 
samband som ekvationer (processmodeller). 

Att bestämma larmgränsen för vad som bedöms som normalt eller felaktigt 
är ett kritiskt steg i all feldetektion. Resultaten i avhandlingen tydliggör det 
förväntade sambandet att god tillgång på information (data) om hur de nor-
mala och felaktiga tillstånden förenklar uppgiften att bestämma gränsen däre-
mellan (d.v.s att välja larmgräns). Kunskap om både normal- och feltillstånd 
hos sensorer och processer är dock begränsad i praktiken, vilket därmed be-
gränsar möjligheterna med maskininlärning. En enkel lösning förslås som åt-
gärd, vilken i korthet innebär att data om sensorunderhåll används för att iden-
tifiera sensorns normaltillstånd. 

En annan metodik som studerades för att öka informationsinnehållet i data 
var att tillfälligt störa, eller excitera, processen. Genom denna metodik kan 
man undvika att variationer i mätningarna (mät- och processbrus) skymmer 
de förändringar man vill detektera. Metodiken visade sig användbar för att 
både detektera missvisande syresensorer, samt för att samla in mer informa-
tiva mätdata till en modell som i förlängningen används för att övervaka att 
luftningsutrustningen fungerar bra. Genom att enbart störa sensorn blir det 
möjligt att separera fel i sensorn från processvariationer, vilket vanligtvis är 
mycket svårt, såsom i exemplet med syreregulatorn. Liknande metoder har 
framgångsrikt använts i andra tillämpningar och resultaten i denna avhandling 
visade att det även är tillämpbart för feldetektion på reningsverk. 

Resultaten i avhandlingen har bidragit till en bättre förståelse för hur sen-
sorfel påverkar reningsprocessen, samt hur flera typer av fel kan detekteras 
genom att analysera data på olika sätt. Detta kan leda till mera robust och re-
surseffektiv drift av reningsverk. Flera feldetektionsmetoderna som använts i 
avhandling har dessutom utvärderats på verkliga processer och kan därför 
även tillämpas i praktiken. 
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1 Introduction 

The goal with this thesis is to develop and apply methods that can detect de-
viations from the desired behaviour in components in water resource recovery 
facilities (WRRFs). In short, apply fault detection methods (FDMs) to im-
prove wastewater treatment. 

1.1 Research motivation 
WRRFs operate 24/7 to limit the environmental impact from pathogens, nu-
trients, and recently also pharmaceutical residues in the used water 
(wastewater). Through the global urbanization trend, cities grow large and 
concentrate the anthropogenic impact on the locally receiving waters. For this 
reason, effluent wastewater permits are getting increasingly strict. This is cer-
tainly true for Stockholm in Sweden, with three large WRRFs neighbouring 
the nutrient-sensitive Baltic Sea. These represent about 15 percent of the total 
phosphorous load and 30 percent of Sweden’s total nitrogen load from 
WRRFs, to the Eastern Baltic Sea (Käppalaförbundet 2018, Naturvårdsverket 
2018, Stockholm vatten och avfall 2019). All three facilities are either cur-
rently re-built or are planned for retrofitted processes in order to compensate 
for the increased influent load and the stricter effluent permits. A benefit, how-
ever, with large centralized WRRFs is that advanced treatment technologies 
become feasible. 

Automatic control has become an integral part for leveraging the benefits 
with advanced treatment processes. Automatic control has additionally al-
lowed a balance between treatment efficiency and resource efficiency. For ex-
ample, consumption of electrical energy and chemicals is a trade-off for emis-
sions to the receiving water and air (Larsen 2015). 

But automatic control is also vulnerable for failures. An automatic control 
loop can produce very poor performance, much worse than manual control, if 
fed with inaccurate information. In this respect, accurate on-line sensor meas-
urements are essential. Additionally, many manually taken process operation 
decisions are based on data from on-line sensors. 

By contrast, early WRRF process monitoring was based on manual sam-
pling and laboratory analyses. This was successively changed through the in-
troduction of dissolved oxygen (DO) sensor in the 1970’s, in combination with 
automatic process control (Olsson 2012). Since then, a multitude of measuring 



 14 

techniques have been developed to provide high resolution data on time scales 
of minutes or seconds. Data availability has transitioned from being a bottle-
neck, to currently overwhelm operators. Examples of commonly measured pa-
rameters include dissolved oxygen, flow, suspended solids, nitrous, phospho-
rous and carbonaceous fractions measured in the water phase. In addition, gas 
sensors have become important to assess the contribution of greenhouse gases 
from the treatment processes. Today, on-line sensors are ubiquitous and pro-
duce ever-increasing data streams. 

In parallel to the development of measurement technologies, the costs of 
computational power and data storage have drastically decreased since the 
1970’s, and this has made it economically feasible to record and save the large 
quantities of process data. Simultaneously, the exploitation of data has 
emerged outside process control to influence most of the WRRF’s organiza-
tion. Apart from process optimization and key process indicators, historic pro-
cess data are now used for design of retrofitted processes, calibration of pro-
cess models, and are recently expected to be part of the game-changer of data-
driven support (artificial intelligence). 

However, the increase in available data has led to a dual monitoring task, 
where operators need to monitor the process simultaneously as the status of 
the on-line sensors. High quality data do not come for free, despite affordable 
sensors. By contrast, the workload of sensor maintenance increases with the 
number of installed sensors. The maintenance typically requires manual clean-
ing, calibration, and replacement of disposable parts and this work is com-
monly routinely scheduled since there is currently no good method to support 
condition-based maintenance. The harsh measurement environment in 
WRRFs has often been underestimated in terms of the required sensor mainte-
nance. A complicating aspect is that is difficult, or commonly impossible, to 
distinguish a sensor fault from a process disturbance.  

These factors make data validation complicated, but nonetheless a central 
task. Several data quality validation approaches have been described (Irizar et 
al. 2008, Olsson et al. 2014, Rosén 2001), but there is no standard for auto-
matic data validation in WRRFs (Olsson 2012). Ultimately, automatic data 
validation governed by sensor fault detection is needed for improving current 
operations and increasingly stricter effluent permits, automatically controlled 
advanced treatment technologies, and the partly unknown future data reuse 
purposes. In the end, data are expected to play an increasingly central role for 
how we treat our wastewater. 

1.2 Research goal 
The long-term goal with this research is to improve the data quality in the 
facilities. The initial hypothesis was that on-line sensor data quality will be 
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improved if faults can be quickly identified and subsequently corrected. 
Therefore, this thesis aims to 

“Develop and adapt fault detection methods with an emphasis on sensor faults, 
which are suitable for WRRF full-scale operations.” 

The need for improved data quality and fault detection was raised by stake-
holders in the wastewater utilities, some of whom also funded part of this re-
search project. An initial feasibility study was conducted in 2014 to identify 
the practical challenges related to data quality (Samuelsson 2014). A qualita-
tive approach was used for the study with interviews of eight employees (pro-
cess engineers, process managers, and instrument technicians), all working 
with data from different perspectives. The answers were considered as a good 
indication of the current needs for the three utilities during the initiation of this 
research project (2014). They are still relevant and have been a source of in-
spiration to target relevant problems. 

This thesis was limited to consider problems related to FDMs, although the 
feasibility study illustrated a broader set of challenges. These included organ-
izational- and measurements-technique-specific issues but were out of the 
scope for this thesis. 

Two topics were considered in the feasibility study: 1) quality of on-line 
sensor data, and 2) FDMs applicable to such sensors. A few typical interview 
questions were:  

Quality of on-line data 
• Which issues exist today concerning data quality from on-line sensors? 
• Which are the key factors that give rise to the aforementioned issues? 

Fault detection methods 
• What is the experience of fault detection and monitoring at wastewater 

treatment plants today?  
• Which methods are used today to detect sensor faults and sensors disturb-

ances? 

The most frequent answers during the interviews are given in Table 1.1. They 
have a wide scope and would require extensive research (more than a PhD 
thesis at least) to be answered in full. Nevertheless, many problems will be 
considered throughout this thesis, as indicated in the first column in Table 1.1.
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Table 1.1. Problems related to fault detection mentioned during interviews in the 
feasibility study. Table adapted from (Samuelsson 2014). 

Considered 
in chapter Problem Importance 

4  Can I trust this on-line value and more specifically, how 
much can I trust this on-line value? 
 

Mentioned 
several times 

by people 
with different 

job assign-
ments 

 

4,5,6,8 What is the normal condition in a plant? 
 

3,7 The constant state is a varying state. This makes it diffi-
cult to determine intervals for cleaning and calibration 
 

2,3,7 The sensor is fouled, how can an interval for cleaning be 
decided before it is too late? 
 

- 
Some processes are coupled in series and others in paral-
lel, and this affects both sensors and their interaction 
with each other. How can this process knowledge be 
used to detect sensor faults 

3,5,7 How can slow drift in sensor values be detected in a con-
tinuous process? 
 

Mentioned 
more than 

once 

4,7,8 Is it possible to distinguish between sensor faults, pro-
cess disturbances and dosage error (control issues)? 
 

4 The rapid increase in sensors and registered on-line data 
makes it hard to overview and use available information 
 

2 Which sensors are most important to maintain or fix 
right now? Is it possible to prioritize the importance of 
sensors, both by function and maintenance? 
 

3,7 Is it possible to detect sensor faults in sensors that show 
a reasonable process value? 



 17

1.3 Fault detection 
This section first gives a background to the definition of a fault (Section 1.3.1) 
and the specific conditions in WRRFs and how they impact the practical pos-
sibilities to detect faults (Section 1.3.2). Next, the historical development of 
fault detection (Section 1.3.3) is briefly outlined, and last, general theoretical 
aspects related to tuning and performance assessment of FDMs are described 
(Section 1.3.4). 

1.3.1 A general definition of fault detection 
A fault can be defined as 

“An unpermitted deviation of at least one characteristic property or  
parameter of the system from the acceptable/usual/standard condition”  
(Isermann and Ballé 1997) 

and one definition of fault detection follows from the same article 

“Determination of the faults present in a system and the time of detection”. 

The natural step after fault detection is fault diagnosis, which includes isola-
tion and identification as part objectives. The work described in this thesis has 
mainly been limited to fault detection. 

The purpose of the fault definition was to achieve a consistency of termi-
nology for a better understanding of various research efforts (Isermann and 
Ballé 1997) and this is the fault definition recommended by the International 
Federation for Automatic Control (IFAC). The definition nevertheless re-
quires a subjective decision regarding the standard condition. In WRRFs, the 
standard or normal conditions vary considerably. To distinguish between nor-
mal variation and a fault is the key challenge and common sensor fault symp-
toms sensor signals are illustrated in Figure 1.1. The figure is adapted from 
and a summary of the symptoms described in (Olsson et al. 2005, Rosén 1998, 
Rosén et al. 2008, Yoo et al. 2008). 
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Figure 1.1. Common fault symptoms in sensor signals from WRRFs. The symptoms 
were simulated and added to data from a pre-processed dissolved oxygen measure-
ments. 

In practice, it is likely that a sensor fault would result in a combination of 
different symptoms. Unfortunately, little work has been done to characterize 
various faults and what symptoms they exhibit. 

1.3.2 Wastewater data characteristics 
The striking characteristic of WRRF data is that the signals vary considerably. 
The variations in data are a result of the highly varying conditions within the 
wastewater system, which are reflected in the influent. The measurement con-
ditions for on-line sensors are also challenging and further contributes to the 
variations in data. The main sources of normal variations are introduced in this 
section since it is an integral task in fault detection to distinguish between 
normal variations and a change caused by a fault. 
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1.3.2.1 Influent variations 
Wastewater collection and treatment naturally exhibit variations that are 
strongly linked to domestic water consumption patterns. Further, there is also 
a strong connection to surface or storm water sewers that are either combined 
or connected with the wastewater sewer at multiple overflow discharge out-
lets. 

Although the relationship between water consumption and wastewater gen-
eration may seem straightforward, it is not possible to establish a clear rela-
tionship between the generating mechanisms and the expected wastewater pat-
terns (Martin and Vanrolleghem 2014). Several efforts have been made to an-
alyse (Farkas et al. 2020, Lindblom et al. 2019) and also generate artificial 
influent data for the purpose of modelling and simulating wastewater treat-
ment processes (Martin and Vanrolleghem 2014, Saagi et al. 2017)  

As an example, the influent generator described in (Gernaey et al. 2011) 
was developed to provide long-term influent data for simulations. The influent 
generator consists of six stochastic modules that illustrate the dominating fac-
tors leading to a variation in the influent. The six modules include: household 
wastewater generation, industrial discharge generation, soil infiltration, tem-
perature effects, rain generation, and a sewer model that allowed for time de-
lays and first flush effect in the transition from dry to storm weather. Rain (and 
snow melting) causes large deviations from the average flow. 

The magnitude of the variations differs depending on the local conditions. 
Small wastewater collection systems (and resultingly small WRRFs) exhibit 
more pronounced variations than large systems since the flow variations are 
not dampened within the collection system (Metcalf and Eddy 2004). The 
magnitude (hydraulic residence time) of the collection system also leads to a 
time delay. The WRRFs in this thesis can be considered as large wastewater 
systems, treating wastewater from 300,000 up to 750,000 persons. 

Characteristics such as daily, weekly and seasonal variation patterns are 
commonly evident, although the variations around an average pattern are sub-
stantial. In Figure 1.2, daily and seasonal variations for ammonium load are 
shown for 10 weeks in Bromma WRRF (300,000 persons). 

The trend in decreasing ammonium concentration in Figure 1.2 is a sea-
sonal effect of the vacation period, initiated with the Swedish traditional mid-
summer celebration in the end of June. During the vacation period, the city 
population temporarily decreases with the effect of a decreasing load on the 
WRRF. The linkage between society and the influent composition variation 
has become widespread in the public through the pandemic in 2020 with ex-
tensive virus monitoring campaigns in the sewers, see e.g. (Randazzo et al. 
2020).  
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Figure 1.2. Daily and seasonal variations for ammonium load to the activated sludge 
process in Bromma WRRF. Weekly average laboratory samples (grey dashed lines) 
deviate from the on-line sensor values (black solid lines) before the sensor was cali-
brated. Similar drifts can be seen both before and after the sensor calibration. 

Another illustration of variations in data is given in Figure 1.3 where the in-
fluent flow during 3.5 years for Bromma WRRF is shown. 

 
Figure 1.3. Influent flow to Bromma WRRF (right) and its estimated distribution 
(left). 
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In Figure 1.3 it can be seen that the maximum (peak) flow is about twice as 
large as the average. Smaller WRRFs can exhibit much larger maximum to 
average ratios. 

In summary, variations in influent data from wastewater systems exhibit 
regular key patterns (daily, weekly, and seasonal) that are frequently inter-
rupted by rain and snow melting events. 

1.3.2.2 Process variations 
The influent variations also influence the biological treatment process since 
the treatment reaction rates are affected by both temperature and load concen-
trations (influent nitrogen, carbon, and phosphorous). The process dynamics 
for biological nutrient removal have been described in the well-established 
activate sludge model 1 (ASM 1) (Henze et al. 1987) using Monod equations. 
A simplified Monod model for the specific growth rate  of nitrifying bacteria 
can be described by 
 = [ ][ ] +  (1.1) 

where [ ] is the ammonium (substrate) concentration in the reactor 
the half-saturation constant, and the maximum growth rate. The re-

sulting ammonium removal rate in mass per volume and per unit time can 
be described by 
 = [ ] (1.2) 

where [ ] are the nitrifying bacteria concentration in the reactor,  is the 
maximum yield of nitrate given the ammonium load concentration. The max-
imum specific growth rate also depends on the temperature according to the 
van’t Hoof equation (Henze et al. 2002) 
 ( ) = (20° ) ( ) (1.3) 

where  is a temperature coefficient for the specific process. The example 
provided here is a simplification to illustrate that variations in the influent 
composition induce variations in the treatment process. In practice, additional 
factors such as dissolved oxygen concentration, pH, and possible inhibitors 
also affect the growth rate for nitrifying bacteria. Their effect can be described 
with coupled Monod expressions, similar to (1.1). 
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The maximum specific microbial growth rates varies from 0.6 – 0.8 d-1 (ni-
trifying bacteria) to 6.0 d-1 (heterotrophic bacteria)(Henze et al. 2002), indi-
cating that changes in the microbiological composition are slow compared to 
influent flow rate and concentration dynamics. The microbial composition 
within a facility can have an important effect on the treatment rates, see for 
example the review on microbial ecology for denitrification processes (Lu et 
al. 2014). Recent development has excelled our knowledge about microbial 
ecosystem with genetic and species databases (Nierychlo et al. 2020). Still, 
understanding the function and the precise interplay between microbial com-
position and process conditions needs more research (Nierychlo et al. 2020, 
Saunders et al. 2016). 

In addition to biological process variations, many process units are con-
trolled by on-off actions including sludge pumping, intermittent aeration, and 
sludge scrapers. Such intermittent events can result in abrupt large variations 
or regular peaks in related variables. 

1.3.2.3 Measurement related variations 
The bulk data used for monitoring and control in WRRFs are obtained from 
on-line sensors, nutrient analysers, and laboratory analyses. In general, meas-
urements contain variations that result in uncertainties about the true measured 
value. In control theory, measurement noise is commonly assumed to be white 
Gaussian noise and the dominant source of uncertainty. In practice, additional 
measurement uncertainties exist that complicate the assessment of variations 
from sensor data. To characterize sensor performance, a multitude of statistics 
have been described including: accuracy, precision, bias, trueness, repeatabil-
ity, long-term stability, reproducibility, response time, calibration uncertainty, 
non-linearity, measurement noise, coefficient of variation, and limit of detec-
tion and quantification; to mention the most common. For on-line sensors at 
WRRFs, the most relevant performance standard is (ISO 15839:2003 Water 
quality–On-line sensors/analysing equipment for water–Specifications and 
performance tests.) 

Although the ISO 15839:2003 standard was specifically developed for wa-
ter quality sensors, few manufacturers follow it. Instead, they use other per-
formance statistics or only part of the standard (Beaupré 2010). This makes it 
difficult to obtain a general view of the measurement uncertainties at WRRFs. 
For a comparison between the sensor performance statistics provided by sen-
sor manufactures and ISO 15839:2003, see (Beaupré 2010). Although ISO 
15839:2003 includes both recommendations for validation under laboratory 
conditions (without disturbances) and full-scale evaluation, the full-scale val-
idation procedures are more of a general guideline, since they strongly depend 
on local measurement conditions (Beaupré 2010). Recent studies further sug-
gest that pH-sensor drift depend on the individual sensor and should not be 
considered as a general and equal property (Ohmura et al. 2019). 
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In addition to the variations from the actual on-sensor or analyser, the lo-
cation of the sensor in the WRRF also affects the measurement variations, 
mainly because of the heterogeneous conditions in the WRRF. The activated 
sludge process is heterogeneous in the sense that it is composed of flocs with 
different compositions (Wilén et al. 2003) and the solids-in-liquid and gases-
in-liquid are unevenly distributed in the various process units (Samstag et al. 
2016). The heterogeneity is difficult to quantify, although the current research 
in adopting computational fluid dynamics (CFD) for WRRFs indicates the im-
portance of understanding the heterogeneous conditions, see (Karpinska and 
Bridgeman 2016, Samstag et al. 2016, Wicklein et al. 2016) for reviews on 
the topic.  

Air bubbles (gas-to-liquid) are one major source of heterogeneity that af-
fects on-line sensor measurements. For spectrometer and turbidity measure-
ments, an increase in variance and off-set was noticed due to air bubbles 
(Beaupré 2010). Although the disturbance effect of bubbles has not been stud-
ied over a wide array of measurement technologies, it is general knowledge 
that on-line sensors have to be mounted in accordance with the manufacturer 
description, e.g. to avoid air bubbles stuck on the sensor’s measurement cell. 
Methods for characterizing heterogeneous media have been suggested 
(Petersen and Esbensen 2005), and in the context of WRRF data (Rossi et al. 
2011).  

Incorrect sensor mounting should not be considered as normal, but it is nor-
mally difficult to obtain both an optimal sensor position (from a measurement 
perspective), and at the same time to allow easy sensor maintenance. This re-
sults in a trade-off for the selected sensor location where some measurement 
variations are normally an effect of the sensor location. 

Ultimately, it is clear that WRRF data include measurement uncertainties, 
but the magnitude of those uncertainties are uncertain. It is an important ob-
jective for a FDM both to detect when measurement uncertainties exceed nor-
mal variation, but also to quantify the normal uncertainty magnitude in data. 

1.3.3 The history and progression in fault detection 
The field of fault detection and diagnosis is broad in the sense that most exist-
ing modelling methods can be adopted for fault detection purposes. As a re-
sult, a wide array of FDMs has been developed for various applications. The 
original driving force for developing fault diagnosis systems was safety criti-
cal applications starting with aerospace applications and electrocardiograms 
in the 1970’s (Willsky 1976) followed by chemical processes (Himmelblau 
1978), and submarines and space vehicles (Gertler 1988). More recently, fault 
detection has become increasingly important for cyber security 
(Showkatbakhsh et al. 2020). 

As the field of fault detection evolved, numerous ways of classifying the 
FDMs have been suggested. In an early review by Gertler (1988), model- and 
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non-model based fault diagnosis system was sufficient to distinguish existing 
FDMs (Gertler 1988). Later, Isermann & Ballé (1997) reviewed five years 
development within the field and classified FDMs according to: observer 
based, parity space based, parameter estimation, frequency spectral analysis, 
and neural networks based fault detections methods. Change detection and 
fault classification methods were classified as: neural nets, fuzzy logic, Bayes 
classification, or hypothesis testing (Isermann and Ballé 1997). In the three-
part extensive review by Venkatasubramanian et al. (2003), process FDMs 
were classified as either: quantitative model-based, qualitative model-based 
and process history-based were each group contained several sub-groups. For 
the application of nuclear power plants, fault detection and diagnosis methods 
were classified as: model-based, data-driven, and signal-based (Ma and Jiang 
2011) were a similar classification was used in (Qin 2012) for process moni-
toring methods including the groups: model, signal, knowledge-based, and hy-
brid and active fault diagnosis methods. In a WRRF context, computer-based 
methods for data management were divided in order of complexity: Low-level 
data checking, basic or advanced information extraction, and Human-inter-
pretable information extraction and knowledge management (Corominas et al. 
2017). Grey-box modelling (Sohlberg and Jacobsen 2008) is one technique 
that has surprisingly received little attentions in WRRF applications. 

Today, machine learning has entered the fault detection literature (Lei et al. 
2020, Md Nor et al. 2020), which are grouped into supervised and unsuper-
vised, classification or regression algorithms or deterministic and probabilistic 
methods. Related to fault detection with rare faults is the one-class classifica-
tion, which include adaption of the supervised, and unsupervised methods 
based on the available data (Barnabé-Lortie et al. 2015, Sabokrou et al. 2018). 

The inconsistency in classifying FDMs is confusing in order to understand 
why various FDMs have been successful in different applications. A common 
approach for the reviews has been to describe the occurrence of FDMs and 
their applications. This is however of little use for this thesis, since it is mainly 
the interplay between characteristics of data and the method that is interesting 
for understanding the rationale of a FDM. From a mathematical perspective, 
it does not matter whether data originate from a pressure sensor in a WRRF 
or a nuclear power plant. What does matter is if the data characteristics widely 
differ between the applications in such way that the fault detection task be-
comes more or less complicated. Therefore, the illustration in Figure 1.4 
adapted from (Venkatasubramanian et al. 2003), is appealing to assess how 
and why certain FDMs have been successful in specific applications.  
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Figure 1.4. Transformation of measurement data to information suited for fault de-
tection and diagnosis. Adapted from (Venkatasubramanian et al. 2003). 

The main point in Figure 1.4 is that it illustrates a FDM as a combination of 
two data transformation steps relating measurement space with feature and 
decision space. Transformation to feature space can be explained as raw data 
(measurement space) that are pre-processed in such a way that certain charac-
teristics (features) become clear and better describe the difference between the 
normal and faulty mode, compared to measurement space. We thus use our a 
priori knowledge about the detection problem by considering relevant fea-
tures. An example of a signal’s feature is its variance. In the next step (decision 
space), a decision variable is defined in some test statistic. The last transfor-
mation step (class space) decide whether a fault is present or not (or for diag-
nosis, assigns the most likely fault hypothesis). Note that the decision space 
will be limited by the information provided from the feature space. At the 
same time, valued information from feature space will be of little use if a poor 
decision rule is applied. This interplay between feature and decision space is 
a hallmark of FDMs. 

1.3.4 Tuning and performance assessment of fault detection 
methods 

At the heart of fault detection lies the viability to distinguish normal from ab-
normal (faulty) observations. This relates to defining a suitable alarm thresh-
old that balance false alarms and detection rate at a desired level. Due to the 
stochastic nature of most systems, probability theory has become the key tool 
for understanding how this threshold should be set. 

The fundamental Neyman-Pearson theorem states an optimal hypothesis 
test when the probability distributions of the normal and faulty distributions 
are completely known (Kay 1998). In this test, which is denoted the likelihood 
ratio test (LRT), the test statistic ( ), compares the conditional likelihood 
for the hypothesis of a faulty distribution, ( | ), for the critical region of , 
with the equivalent likelihood for the normal hypothesis and distribution ( | ).  
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The LRT is then given by 
 ( ) = ( | )( | ) >  (1.4) 

where the threshold , identifies the maximum detection probability for 
the lowest, and user specified, false alarm probability  according to 
 = ( | )  (1.5) 

where the integration is conducted over = | ( ) > . The optimally as-
signed threshold, in terms of a maximized detection probability for a given 
false alarm probability, is illustrated in Figure 1.5. 

A decision threshold that is similar to (1.4) is obtained when instead the 
probability of error  (also known as the misclassification rate) is minimized, 
see (Bishop 2006, Kay 1998). The  is the sum of incorrect classifications, 
weighted by the probabilities for the normal ( ) and faulty modes ( ) as 
 = ( | ) ( ) + ( | ) ( ). (1.6) 

Then, the  is minimized when an alarm is raised if 

 ( | )( | ) > ( )( ) =  (1.7) 

where  is the threshold (Kay 1998). The main difference between the LRT 
and  threshold is that the LRT emphasizes the false alarm rate and the  
considers both the normal and faulty distribution. The  allows for a threshold 
adjustment by adding different costs for the misclassifications, see Figure 1.5. 
The cost adjusted misclassification rate, sometimes referred to as the Bayes 
risk raises an alarm if 
 
 ( | )( | ) > ( − ) ( )( − ) ( ) = , (1.8) 
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where the costs for false alarm ( ) and missed detection ( ) are user-de-
fined values and the correct classifications true detections ( ), and normal 
observations ( ); are commonly assigned zero cost. As an example of the 
usefulness of the Bayes risk, consider an alarm that indicates broken diffusers 
in an activated sludge process. The mitigating counter action would involve a 
substantial maintenance effort. In contrast, the cost for running the WRRF one 
additional week to verify that the effort really is needed would be acceptable 
due to the large cost of false alarm. 

The mentioned decision thresholds are optimal when the underling distri-
butions are known. This is not true for most real applications such as the stud-
ied WRRF. For this reason, several variants of the LRT have been developed 
to approximate the true probability distributions. 

Maximum likelihood estimation (MLE) is the most common approxima-
tion to estimate the distribution parameters for the faulty  and non-faulty 
(normal) distribution . This revised test statistic is known as the generalized 
likelihood ratio ( ), which is reliant on the MLE of assumed distributions 
(commonly Gaussian) in combination with data, , as 
 ( ) =  (1.9) 

The distribution parameters can also be marginalized out by assuming prior 
parameter distributions ( ) and ( ), which then gives the marginalized 
likelihood ratio (or Bayes factor) as 
 ( ) = ( | ) ( )( | ) ( )  (1.10) 

In the end, it should not be forgotten that the validity of any decision rule for 
real-world data are reliant on a good approximation of the underlying distri-
butions and how well the generated data represent the true distributions. It 
should also be recalled that the original purpose for identifying an optimal 
decision threshold is to achieve good fault detection performance in a practical 
application. 

The detection performance is commonly visualized by the Receiver oper-
ating characteristics (ROC). In a ROC-curve, the false alarm probability for 
varying thresholds of γ is plotted against the detection probability, resulting in 
a concave curve (Figure 1.5, bottom graph) 
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Figure 1.5. Top) Illustration of overlapping normal ( , ) and faulty ( , ) prob-
ability distributions. Shaded area indicates the critical region  and likewise the false 
alarm probability for the threshold . The minimized misclassification rate is in-
dicated with . Middle) Histograms based on 20 random samples from the true 
distributions (grey, thick lines), with the estimated distributions (black, thin lines). 
Bottom) The receiver operating characteristics for the true (grey, thick line) and es-
timated distributions (black, thin lines) in the middle graph. The circles and squares 
indicate the thresholds assigned by LRT and PE, respectively. 

An optimal detector would give a complete detection probability with no false 
alarm resulting in a flat ROC-curve with detection probability one for all false 
alarm probabilities. Such a detector would indicate that the faulty distribution 
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is completely separated from the normal distribution. A poor detector that uses 
only random luck (similar to flipping a coin) would have equal detection and 
false alarm probabilities for all thresholds which would result in a straight line, 
splitting the ROC-graph into two equal halves and would give a lower limit 
for the performance of any (useful) fault detector. A scalar measure of the 
ROC is obtained by integrating the area under the ROC-curve, which is de-
noted the area under the curve (AUC). This gives an indication of the overall 
performance of the FDM, although only a part of the AUC may be informative 
about the relevant performance. For example, the partial AUC may be more 
relevant for comparing the performance of methods up to a given false alarm 
rate, than the complete AUC, see e.g. (Tian 2010). The power function 
(Casella and Berger 2001) is one additional probabilistic performance 
measures, which also considers the magnitude of the fault. 

The main limitation with probabilistic measures is that they require detailed 
knowledge about the normal and faulty mode. How an inaccurately specified 
hypothesis (faulty or normal distribution) impact the performance assessment 
can be measured in terms of the Kullback-Liebler divergence between the true 
probability distribution ( ) and the incorrect one ( ) 
 ( ), ( ) = ( ) log ( )( )  (1.11) 

Equation (1.11) measures how much statistical power is lost due to an incor-
rectly specified hypothesis (Eguchi and Copas 2006). Note that (1.11) is the 
expectation of the logarithm of the likelihood ratio between the true probabil-
ity distribution ( ) and the incorrect one ( ), which is zero when the as-
sumed distribution is correct. The validity of the performance assessment de-
rived from probability theory will therefore increase with an increasing num-
ber of representative samples. 

An increasing number of samples will also improve the sensitivity in dis-
tinguishing a fault in the likelihood ratio in (1.4). This also relates to how the 
signal-to-noise ratio of normal and faulty distributions (the magnitude of the 
fault) impact the detection performance. The impact from signal-to-noise ratio 
can be realized from Figure 1.5, top graph, where a better separation between 
the normal and fault distribution is obtained for decreasing the noise variance 
and increasing the fault magnitude (bias). Similarly, for an increasing number 
of measurements, the uncertainty about the mode separation due to the vari-
ance in the distributions decrease, which can be understood as an increased 
(fault) signal-to-noise ratio. 

The observation that the detection performance depend on both the fault 
magnitude and the number of measurements implies the inherent trade-off for 
FDMs - a fast detection time versus robust fault detection in terms of few false 
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alarms. Several time related measures have therefore been suggested, for ex-
ample, the mean time to detection (MTD), the fault detection index (Carlsson 
and Zambrano 2016), and the average run length (ARL) between false alarms 
(Basseville and Nikiforov 1991, Gustafsson 2000). Hybrid measures that com-
bine time to detection and the correctness of an alarm have also been proposed 
(Corominas et al. 2011). 

The most prevalent performance assessment, however, only considers the 
frequency of correct fault detection rate ( ), normal observations ( ), incor-
rect classifications, false alarm rate ( ), and missed detection ( ). These 
frequencies are commonly summarized in a confusion matrix (Figure 1.6) and 
can be derived from the underlying normal and faulty distributions as previ-
ously illustrated in Figure 1.5. 
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Figure 1.6. The binary confusion matrix. 

Several meta-performance measures have been suggested, which are based on 
the confusion matrix content. Apart from the mentioned ROC and AUC, the 
precision-recall and F1-measure are prevalent in machine learning applica-
tions (Chen et al. 2020, Naseer et al. 2018). 

So far, I have implicitly considered fault detection as a binary classification 
task. But fault detection can also include continuous variables, for example, a 
regression or a dynamic model simulation that is combined with a decision 
function in the decision space. Then, it can be relevant to assess the perfor-
mance of the model, where conventional performance metrics such as the 
mean squared error and equivalent measures are applicable (Gustafsson 2000, 
Hauduc et al. 2015). 

There is clearly a large toolbox available for performance assessment of 
fault detection methods. Their applicability depends on how detailed 
knowledge that is available about the studied system. For example, time-based 
measured require knowledge of the exact start and end time for the fault, i.e. 
complete knowledge about both the normal and faulty modes. This is available 
in simulations, but seldom in practice. In practice, such annotated data can be 
scarce, especially for rare faults. How such annotations can be facilitated by 
domain experts is a current research area (Lei et al. 2020, Russo et al. 2020). 
How these expert annotations can be conducted and obtained in an efficient 
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way is currently a bottleneck for performance assessment. Still, when anno-
tated data are available, it is critical that they are representative and in suffi-
cient amount to represent the true probability distribution, see Figure 1.5. 

1.4 Contributions 
This thesis is based on the following publications and manuscripts. The article 
content has been printed with permission from the publishers. Chapter 9 and 
10 are my own conclusions from the results in Chapter 2-8. The Chapters 2-8 
were, by contrast, a collaborative research effort by all co-authors. My contri-
bution to these joint publications is described in the following section. 

Peer-reviewed journal publications  

Paper I: Samuelsson, O., Björk, A., Zambrano, J. and Carlsson, B. (2018) 
Fault signatures and bias progression in dissolved oxygen sensors. Water 
Science and Technology, 78(5), 1034-1044 

Paper I provides evidence about biofilm progression on electrochemical- and 
fluorescent-based dissolved oxygen sensors in-situ, and how biofilm fouling 
impacts the measurement accuracy. Further, two annotated benchmark da-
tasets were produced containing high-frequency (1 Hz) data for the dissolved 
oxygen impulse response due to automatic air-cleaning. Last, different symp-
toms of sensor faults were identified in the impulse responses. Paper I is con-
tained in Chapter 3 with minor stylistic changes. 

I was responsible for the conception, design, and execution of the experi-
ments with subsequent data analysis and interpretation of the results with sup-
port from the co-authors. I drafted the original manuscript and revised it 
through collaboration with the co-authors.  

I received great support from Simon Robertsson regarding execution of the 
experiments in Henriksdal WRRF and IVL Hammarby Sjöstadsverk R&D fa-
cility. 

Paper II: Samuelsson, O., Zambrano, J., Björk, A. and Carlsson, B. (2017) 
Gaussian process regression for monitoring and fault detection of wastewater 
treatment processes. Water Science and Technology, 75(12), 2952-2963 

In Paper II, the Gaussian process regression method is introduced in a 
wastewater context where the usefulness of sequential Monte Carlo hyperpa-
rameter approximation over the common maximum likelihood estimation for 
avoiding local optima is demonstrated. The study further emphasizes the logic 
to only consider advanced FDMs when required, as simple methods are 
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enough for simple problems. Paper II is contained in Chapter 5 with minor 
stylistic changes. 

I was responsible for the conception, design, and execution of the experi-
ments with subsequent data analysis and interpretation of the results with sup-
port from the co-authors. I drafted the original manuscript and revised it 
through collaboration with the co-authors. 

Paper III: Zambrano, J., Samuelsson, O. and Carlsson, B. (2019) Machine 
learning techniques for monitoring the sludge profile in a secondary settler 
tank. Applied Water Science, 9(6), 146 

In Paper III, the practical limitation with only normal training data is empha-
sized and illustrated with two probabilistic supervised machine learning meth-
ods on real data, which essentially relates to solving a one-class classification 
problem. The applicability of such methods in a realistic WRRF context was 
novel at the time for the study’s initiation. Paper III is contained in Chapter 6 
with minor stylistic changes. 

I contributed to the conception, and interpretation of the results and sug-
gested improvement on the manuscript drafted by the first author. 

Paper IV: Samuelsson, O., Zambrano, J., Björk, A. and Carlsson, B. (2019) 
Automated active fault detection in fouled dissolved oxygen sensors. Water 
Research 166, 115029 

Paper IV demonstrates the importance of gaining feasible (preferably auto-
mated) access to sufficient and representative normal data, both for fault de-
tection tuning and performance assessment. The study introduces the active 
fault concept into a WRRF context by extending an existing conceptual model 
about data transformation steps related to fault detection. Paper IV is con-
tained in Chapter 7 with minor stylistic changes. 

I was responsible for the conception, design, and execution of the experi-
ments with subsequent data analysis and interpretation of the results with sup-
port from the co-authors. I drafted the original manuscript and revised it 
through collaboration with the co-authors. 

Paper V: Samuelsson, O., Olsson, G., Lindblom, E.U., Björk, A., and Carls-
son, B. Sensor bias impact on efficient aeration control during diurnal load 
variations (accepted for publication in Water Science and Technology) 

In Paper V, the impact from biased sensors used for automatic aeration control 
is assessed in a simulation study, which is facilitated by response surface 
methodology. Anticipated negative effects from sensor bias were verified and 
identified to be dependent on the sensor bias direction and magnitude. The 
study motivates sensor fault detection. Paper V is contained in Chapter 2. 
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I was responsible for the conception, design, and execution of the simula-
tion experiments with subsequent data analysis and interpretation of the results 
with support from the co-authors. I drafted the original manuscript and revised 
it through collaboration with the co-authors. 

Manuscripts submitted, or to be submitted, for journal publication 
 

Paper VI: Samuelsson, O., Le, H. Q., Björk, A., Erikstam, S., Volcke, E.I.P., 
and Carlsson, B. Practicability of mass balance based data reconciliation for 
process rate monitoring (manuscript, to be submitted for publication) 

Paper VI evaluates the trade-off between following theoretical assumptions 
and pragmatic ad-hoc settings related to the error covariance matrix and gross 
error detection in mass balance-based data reconciliation. A new approach for 
assigning the error matrix is further suggested and evaluated in a pilot plant 
experiment. Practical advice and future research directions are given to avoid 
pitfalls that have not been emphasized in the literature. Paper VI is contained 
in Chapter 4 with minor stylistic changes. 

I and Hong Quan Le were jointly collaborating on the conception, and de-
sign of the experiments with subsequent data analysis and interpretation of the 
results, with support from the co-authors. I drafted the original manuscript and 
revised it through collaboration with the co-authors.  

I received great support from the numerous people at Käppala WRRF re-
garding sensor installation, experimental execution, and conducting labora-
tory analyses. 
 
Paper VII: Samuelsson, O., Björk, A., and Carlsson, B. Monitoring diffuser 
fouling with grey-box modelling (submitted for publication) 

Paper VII demonstrates that the combination of simple process disturbances 
and mechanistic models is useful to assess the condition of aeration diffusers. 
Several unknown measurement disturbances were identified during the 18 
months long full-scale evaluation of the proposed method. Paper VII is con-
tained in Chapter 8. 

I was responsible for the conception, design, and execution of the experi-
ments with subsequent data analysis and interpretation of the results with sup-
port from the co-authors. I drafted the original manuscript and revised it 
through collaboration with the co-authors.  

I received great support from Christer Persson (Bromma WRRF) who im-
plemented the staircase method on the existing control system, and Anders 
Påhlsson (Bromma WRRF) who modified the existing sensor data collection 
routine. 
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Licentiate thesis 
Samuelsson, O. (2017) Fault Detection in Water Resource Recovery Facili-
ties. Licentiate Thesis, Uppsala University, Uppsala. 

Part of the results have also been presented on the following conferences 

Conferences publications 
Samuelsson, O., Le, H. Q., Björk, A., Erikstam, S., Volcke, E.I.P., and Carls-
son, B. (2019). Steady-state data reconciliation of a dynamic process. In:  
WATERMATEX 2019, September 1–4, Copenhagen, Denmark. 
 
Samuelsson O., Olsson, G., Lindblom, E.U., Björk A. and Carlsson B. (2019). 
Sensor bias impact on controlling daily variations in wastewater loads. In: 
WATERMATEX 2019, September 1–4, Copenhagen, Denmark. 
 
Samuelsson O., Zambrano J., Björk A. and Carlsson B. (2019). Automated 
active fault detection in fouled dissolved oxygen sensors. In: Nordiwa 2019, 
September 23–25, Helsinki, Finland. 
 
Samuelsson O., Olsson, G., Lindblom, E.U., Björk A. and Carlsson B. (2019). 
Sensor bias impact on controlling daily variations in wastewater loads. In: 
Nordiwa 2019, September 23–25, Helsinki, Finland. 
 
Samuelsson O., Björk A., Zambrano J. and Carlsson B. (2017). Monitoring of 
fouled DO-sensors with active fault detection. In: 12th IWA Specialized Con-
ference on Instrumentation, Control and Automation (ICA), Quebec, Canada. 
 
Samuelsson O., Zambrano J., Björk A., Chistiakova T. and Carlsson B. 
(2015). Detecting anomalous air flow-ammonia load ratios, using Gaussian 
process regression. In: WATERMATEX 2015, June 14–17, Gold Coast, 
Queensland, Australia. 
 
Zambrano J., Samuelsson O., Chistiakova T., Liu H. and Carlsson B. (2015). 
Gaussian process regression for monitoring a secondary settler. In: 2nd IWA 
Conference on New Developments in IT & Water, February 8–10, 2015, 
Rotterdam, The Netherlands. 
 
Zambrano J., Samuelsson O. and Carlsson B. (2016). Monitoring a secondary 
settler using Gaussian mixture models. In: EUROSIM 2016, September 12–
16, Oulu, Finland, IEEE Computer Society. 
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2 Sensor bias impact on controlling daily 
variations in wastewater loads 

This chapter highlights the need to increase our understand of the interplay 
between sensor drift and the performance of the automatic control system. The 
impact from biased sensors on the automatic control systems is rarely consid-
ered when different control strategies are assessed in water resource recovery 
facilities. Still, the harsh measurement environment with negative effects on 
sensor data quality is widely acknowledged. Simulations were used to show 
how sensor bias in an ammonium cascade feedback controller impacts aera-
tion energy efficiency and total nitrogen removal in an activated sludge pro-
cess. Response surface methodology was used to reduce the required number 
of simulations, and to consider the combined effect of two simultaneously bi-
ased sensors. The effects from flow variations, negatively biased ammonium 
(-1 mg/L) and suspended solids sensors (-500 mg/L) reduced the nitrification 
aeration energy efficiency between 7 and 25 percent. Less impact was seen on 
total nitrogen removal. There were no added non-linear effects from two sim-
ultaneously biased sensors, apart from an interaction between a biased ammo-
nium sensor and dissolved oxygen sensor located in the last aerated zone. Neg-
ative effects from sensor bias can partly be limited if the expected bias direc-
tion is considered when the controller setpoint-limits are defined. 

2.1 Introduction 
Automatic control has developed to be an essential tool for balancing con-
sistent treatment and energy efficiency (Olsson 2012). Substantial efforts have 
been devoted to develop different aeration control strategies (Åmand et al. 
2013). Most control system studies, however, assume an ideal situation with 
accurate sensor measurements (Santín et al. 2016). In practice, on-line meas-
urements are far from ideal. The water resource recovery facility (WRRF) 
constitutes a harsh measurement environment. This is generally recognized, 
and the commonly accepted standpoint is that biased measurements are wide-
spread and have a negative impact on the desired control target. To our 
knowledge, this assumption has not been verified in studies although tools 
have been developed for that purpose (Rosén et al. 2008). 
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We consider accurate measurements and adequate automatic control to be 
increasingly important for four reasons. First, stricter effluent permits reduce 
the time when control can be out of specifications without violating the regu-
lations. Second, retrofitted advanced treatment processes that need to operate 
together with existing processes makes control more elaborate and sensitive 
for consequential errors. Third, control is essential for a resource efficient 
treatment process. Last, automatic control can attenuate negative effects from 
increasing influent variations that are expected due to global warming. There-
fore, we need to identify the most critical sensors and prioritize sensor mainte-
nance to minimize bias impact as the number of sensors steadily increases. 
Ultimately, these aspects in combination can aggravate the operation and 
make it important to understand the impact from biased sensors on control. 

Different methodologies can be used for studying the impact of biased sen-
sors. Both full-scale and simulation experiments have been applied to assess 
the impact of biased DO sensors (Carlsson and Zambrano 2016). Full-scale 
studies are, however, time-consuming and impractical for assessing the effects 
of the combination of many biased sensors. It is also difficult (commonly im-
possible) to control the influent load, which would be needed to repeatedly 
assess whether the impact of biased sensors depends on different load condi-
tions. Thus, simulation studies are preferred. Simulations also enable a precise 
interpretation (as interpreted within the model’s predictive accuracy), without 
noise that can mask small effects on a full-scale plant. The widely used bench-
mark simulation model platform (BSM) (Jeppsson et al. 2006) is well suited 
for sensor bias evaluation. 

Even a suitable model simulation will be time-consuming and difficult to 
evaluate when a vast number of simulation results are to be compared. As an 
example, the total number of combinations for ten biased sensors with three 
bias magnitudes (consider e.g. bias of -1, 0, +1) is 3 = 59,049. Thus, it is 
clearly a challenge to assess interaction effects between several biased sensors 
at different load scenarios also in simulation studies. 

In this study, we adopt the response surface methodology (Myers et al. 
2004), which limits the required number of simulations, but still enables to 
identify the key effects. The method is reliant on a representative set of simu-
lations (Box and Behnken 1960) that are interpreted via linear regression co-
efficients.  

The goal of this study is to assess the impact of sensor bias on ammonium 
cascade feedback control at different influent variations. The energy effi-
ciency of applying this type of controller has been demonstrated in practice 
(Ingildsen et al. 2002, Rieger et al. 2014, Åmand 2014), but it is possible that 
biased sensors can reduce its advantage. Here, we study how different degrees 
of diurnal variations in the influent (flow and concentration variations) com-
bined with sensor bias impact aeration energy efficiency and total nitrogen 
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removal. Bias in dissolved oxygen (DO), ammonium (NH) and suspended sol-
ids (SS) sensors are studied. The results show that the bias direction is critical 
and can be both beneficial and detrimental depending on the control target. 

2.2 Material and Methods 
This section describes the methodology (Section 2.2.1) and how the simulated 
system with related influent scenarios and sensors bias were defined (Section 
2.2.2). The applied response surface methodology is described in Section 
2.2.3.  

2.2.1 Methodology 
A dynamic process model was simulated with different sensor bias magni-
tudes and evaluated with respect to their impact on two process performance 
indicators, the energy efficiency of nitrification (NITeff), and total nitrogen re-
moval (Nrem). Bias in five sensors (three dissolved oxygen, one ammonium 
and one suspended soldids sensor) and variations in influent flow rate and 
concentrations were studied at three different magnitudes. The combinatorial 
complexity, and likewise the required number of simulations, was reduced by 
applying a reduced factorial design (Box and Behnken 1960) and evaluated 
using response surface methodology (RSM) (Bezerra et al. 2008). The find-
ings indicated by regression coefficients produced by RSM were further ana-
lysed for causal explanations by evaluating the simulation results in detail. 

2.2.2 System description 
The studied system was a dynamic model of a continuous activated sludge 
process (CAS) representing parts of the Henriksdal WRRF in Stockholm, 
Sweden (750,000 p.e.). The CAS consists of pre-denitrification followed by 
three aerated zones for nitrification and a final deaeration zone (Figure 2.1). 
The model is further described in (Lindblom et al. 2019)  



 38 

 
Figure 2.1. Process configuration for the simulated Henriksdal WRRF model with 
ammonium cascade feedback and suspended solids controller. 

2.2.2.1 Controller configuration 
The CAS air supply was controlled by an ammonium cascade feedback con-
troller with DO PI-controllers operating as slave controllers under the master 
ammonium PI-controller (Figure 2.1). Each aerated zone had a separate slave 
DO-controller with equal setpoints provided by the master ammonium con-
troller. This setting was developed by Åmand (2014) and is currently in use at 
Henriksdal WRRF. In practice, there is also an airflow rate slave controller 
for each DO-controller, which was excluded in this study.  

The solids retention time (SRT) was controlled by adjusting the wastage of 
active sludge (WAS) with a PI-controller to obtain an average SS concentra-
tion of 2,500 mg/L. In practice, and in the studied model, this resulted in a 
variable solids retention time (SRT) of 16±3 days. The large SRT variability 
was due to the studied influence of the bias in the SS-sensor, which is de-
scribed in Section 2.2.2.3. The SRT was sufficient to achieve near complete 
nitrification for the studied ammonium load and temperature of 14°C for the 
whole range of studied scenarios. 

All PI-controllers were tuned with the Lambda method (Åström and 
Hägglund 1995). A relatively fast disturbance rejection rate was chosen to as-
sure that the NH controller reacted on diurnal variations. The controller pa-
rameters obtained from the tuning are given in Table 2.1 with DO setpoint-
limits. 
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Table 2.1. Controller parameter settings used in the study. 

 K (-) Ti (h) Setpoint (mg/L) 

DO4-DO6 1000 0.12 1.0/3.8 (min/max) 

NH4 -4 2.4 1.0 

SS 0.67 360 2500 

2.2.2.2 Process performance indicators 
The two process indicators NITeff and Nrem were defined as 

 
 

 
= ∑ ( ) (2.1) 

 = ,  (2.2) 

where the prefix  refers to the mass of: removed total nitrogen ( ), total 
nitrogen in the influent ( , ), nitrified ammonium nitrogen ( ) and ( ) refers to the total  (used as proxy for the mass of oxygen transferred 
from air to water) in zone . In practice, the  depend on the current airflow 
rate and  factor. Both these factors are site specific and difficult to assess in 
practice. The results should therefore be interpreted in terms of an efficient 
aeration system (constant  per airflow rate, regardless of load situation, and 
new diffusers) and an influent free from surfactants that may reduce  and . 
2.2.2.3 Sensor bias magnitudes 
The studied sensor bias magnitudes are given in Table 2.2, which are sug-
gested to represent a reasonable bias due to, for example, a fouled sensor or 
inaccurate calibration. To clarify the notation: a negative bias means that the 
sensor value is lower than the true concentration, and vice versa. Drift in pH 
and DO sensors have been studied in (Ohmura et al. 2019, Samuelsson et al. 
2018), but to our knowledge, bias in SS and NH sensors have not yet been 
estimated. It is important to assume bias magnitudes that may appear in prac-
tice. At the same time, it should be recognized that sensor bias also varies with 
site specific conditions and sensor maintenance. 
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Table 2.2. The three sensor bias magnitudes (levels) considered in the study. 

Sensor Bias (mg/L) 

NH4 -1/0/+1 

DO4-DO6 -1/0/+1 

SS -500/0/+500 

The assumed accuracy in an SS sensor is reflected by the accuracy for labor-
atory samples that are used during calibration. Here, the lab samples had an ± 
20% analytical uncertainty at a 95% confidence interval. This would corre-
spond to a bias of ± 500 mg/L at 2,500 mg/L concentration.  

NH measurements can be conducted with ion-selective probes, gas sensi-
tive and spectrophotometric analysers. The two latter are expected to have a 
higher accuracy than the former. The expected bias should be small in absolute 
terms if following the same reasoning about analytical uncertainty during cal-
ibration, as for the SS sensor. This is because the effluent NH concentration is 
expected to be low (0-3 mg/L) in nitrifying WRRFs. Our experience is, how-
ever, that ion-selective sensors can show substantial drift (Samuelsson et al. 
2017), although the NH sensor drift was not explicitly assessed in that study.  

In the end, we limited the NH bias magnitude to -1 mg/L. This is the largest 
possible bias before the sensor would measure a negative concentration. Sim-
ilarly, the positive NH bias was limited to +1 mg/L to use the same magnitude 
in absolute terms, which facilitates interpretation of the results described in 
Section 2.2.3. 

It was assumed a DO sensor bias of ± 1 mg/L. An approximate 1 mg/L 
negative bias was obtained after about one month of biofilm growth without 
manual cleaning on an electrochemical sensor. By contrast, an optical DO sen-
sor showed a correspondingly large positive bias after 14 days of biofilm 
growth without manual cleaning and only automatic air cleaning (Samuelsson 
et al. 2018). 

2.2.2.4 Influent variations 
Three levels of variations were defined for both influent flow and concentra-
tions: constant, normal and high influent variations (Figure 2.2). The purpose 
was to assess if bias in sensors is more critical at large variations. 

The ‘normal diurnal influent’ and reference scenario was produced by com-
bining measurements from the influent monitoring program with diurnal in-
fluent flow and load patterns to Henriksdal WRRF. The model by Gernaey et 
al. (2011) was used to estimate COD fractions required in the simulation 
model. Both influent concentration variations (nitrogen and carbon) and influ-
ent flow show similar diurnal patterns (Figure 2.2). 
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The constant variation scenarios were produced by either setting the influ-
ent flow or the influent concentration to be constant. The diurnal mass influ-
ents of both NH and COD were kept identical to the normal scenario by ad-
justing the influent concentration or flow mean value correspondingly.  

The high variation scenarios were produced by stretching the normal vari-
ation by multiplying the dynamic diurnal profile with two, but still compen-
sating its mean value so that an identical mass influent as the reference sce-
nario was obtained (Figure 2.2). 

Variations in flow and concentrations were treated as separate factors to 
assess if either of them would give a larger impact in combination with biased 
sensors. 

The study was purposefully limited to consider only diurnal influent varia-
tions, neglecting other variations such as temperature. The reason was to learn 
about the sensor bias impact during the most common disturbances. For the 
Henriksdal WRRF, the diurnal variations represent the typical disturbance 
pattern for about 80% of the time. It is expected that impact from weekly and 
seasonal variations are similar to diurnal load variations, but with a changed 
mass load. Here, we assess interactions between variations in flow/concentra-
tion and sensor bias at a fixed diurnal mass load, to allow a fair comparison. 
This would be slightly different if seasonal and weekly variations were to be 
included. 

The impact from rain and drainage water can be substantial, both in terms 
of flow and impact on the wastewater temperature. How such stormwater 
events impact the WRRF will, however, be very site specific, and therefore 
difficult to generalize. We also expect a large (possibly the largest) negative 
effect on the settler operation. These conditions are difficult to model and 
would introduce uncertainty to the result interpretation. The results here as-
sume a biological treatment process with good settling properties. For these 
reasons, we limited this study to daily normal variations that still represent the 
main time of operation. 
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Figure 2.2. Influent patterns for flow (a) and ammonium (b). Different line types in-
dicate variation levels: normal (solid), high (dashed) and constant (dotted). 

2.2.3 Response surface methodology 
RSM originally gained interest as a tool for industrial product and process 
optimization, and is iterative in its nature (Myers et al. 2004). The RSM ap-
plied here followed four steps 

 
1. Design experiment 

a. Define factors, their levels and output variables 
b. Define which combination of factors and levels to evaluate 

2. Execute experiment 
a. Execute simulations as specified in 1b 

3. Construct a valid regression model 
a. Assess model quality 
b. Remove insignificant model terms 
c. Iterate a-b) until the model only contain significant factors 

4. Interpret the results 
a. Interpret significant model terms (regression coefficients) 
b. Analyse causal reasons for the results indicated in 4a  

Especially steps 3 and 4 are commonly iterated to obtain a final model. Con-
clusions obtained in step 4 often induce additional experiments, reinitiating 
the four-step procedure all over again. 

a) 

b) 
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The experimental design and evaluation were conducted in MODDE 12.1 
(Sartorius), a software for experimental design. The model simulations and 
evaluations were conducted in MATLAB/SIMULINK version R2020a (Math-
Works). 

2.2.3.1 Step 1. Design of experiment 
Three levels were considered for the seven quantitative factors: sensor bias 
(factor 1-5, Table 2.2) and influent variations (factor 6-7, constant/nor-
mal/high flow and concentration variations). Three levels are required to iden-
tify any quadratic effects, which would here require 37 = 2187 combinations 
for a full factorial design. The reduced design suggested in (Box and Behnken 
1960) was used, which required only 57 combinations. The Box-Behnken de-
sign was preferred over the more common central composite design since ex-
treme points are excluded (Bezerra et al. 2008). Extreme points refer to com-
binations where all factors are at their minimum or maximum levels. Here, 
these extreme points would correspond to a situation when all sensors have, 
for example, a positive bias simultaneously as the influent flow and concen-
tration variations are high. This is not expected to be common in practice, and 
the exclusion of those combinations was therefore not expected to influence 
the applicability of the results. The dependent variables (responses) NITeff and 
Nrem were defined in (2.1) and (2.2), respectively. 

2.2.3.2 Step 2. Simulation procedure 
The model was simulated with the different combinations of factor settings 
described in Step 1. For each factor setting, the model was first simulated to 
reach steady state with a constant load for 60 days. Next, the same factor set-
tings were simulated for an additional 120 days with the dynamic influent, 
which allowed the SS to reach steady state. The last seven days were then used 
for evaluation. 

2.2.3.3 Step 3. Construct a valid model 
An initial linear regression model was defined to contain all linear, quadratic, 
and two-factor interaction terms. Nonsignificant model terms measured by the 
corresponding confidence intervals were removed. This procedure was re-
peated until the final model with only significant model terms remained. 

The final model was assessed by verifying a large (>0.8) Q2, which 
measures the regression model’s predictive ability, in contrast to the common 
R2, which only measures the explained variation in the output. Both measures 
are used to assess the model validity. Golub et al. (1979) defined Q2 as 
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 = 1 − ∑ −1 − ( )∑ ( − )  (2.3) 

where  are the inputs that consists of seven factors (sensor bias and influent 
variation) and  are the observed outputs NITeff and Nrem for the  dynamic 
model simulations.  is a -by-7 matrix that contain the factor settings for the 

 dynamic model simulations.  is the mean of all observed outputs (dynamic 
model simulations) and  is the regression model’s predicted output for the 
corresponding simulation . In total,  dynamic model simulations were per-
formed with the bias and influent settings obtained from the Box-Behnken 
design. The regression was conducted by regressing the observed values (dy-
namic model simulations) on the Y-axis for the predicted values on the X-axis 
(regression model predictions) as suggested by Piñeiro et al. (2008). 

2.2.3.4 Step 4. Interpret the results 
The regression coefficients from the final model were analysed with causal 
analysis from the dynamic simulation results. 

2.3 Results 
First, an overview of the results is given, expressed as the obtained regression 
models where the validity of the regression models is also analysed. Then, the 
impact of biased sensor measurements on the process indicators are inter-
preted. Last, the effects from changes in influent variations and interactions 
are analysed. 

2.3.1 The obtained regression model and its interpretation 
The simulation results resulted in two different regression models with six and 
ten significant model terms for NITeff and Nrem, see Figure 2.3(a) and Figure 
2.3(b), respectively. Changes in the influent flow (F) were significant in con-
trast to influent concentration variations that did not have a significant effect 
on any of the process indicators. In general, the impact on NITeff was larger 
than the impact on Nrem (Figure 2.3, note the different scales). The largest ef-
fects were seen from biased NH and SS sensors that included both significant 
linear and quadratic model terms. Interaction effects with other factors were 
seen for the ammonium sensor and are further analysed in the next section. 
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Figure 2.3. Coefficients of the final regression models for NITeff (a) and Nrem (b), in-
cluding 95% confidence intervals. Bias in ammonium sensor (NH), suspended solids 
sensor (SS), and dissolved oxygen sensors (DO) located in zone 4-6 (denoted with 
suffix 4,5,6). 

The regression models were obtained by removing non-significant model 
terms as described in Section 2.2.3. Both models showed a good predictive fit 
(Q2

NITeff =0.82; Q2
Nrem=0.94) and were assumed valid for further analysis. The 

agreement between predicted and simulated values is shown in Figure 2.4. It 
is worth noting that the reference scenario showed a larger value for NITeff 
than the model prediction (square, Figure 2.4). This will not violate the con-
clusions made from the regression model. However, it highlights the fact that 
certain combinations of levels and factors will produce results that deviate 
from the general conclusions, which ought to influence the interpretation of 
the results. We therefore complement the regression model analysis with a 
causal model evaluation of the mass flows and time series in the underlying 
simulation results where non-obvious explanations can be made. 

To avoid confusion about how to interpret the bias direction (positive or 
negative) and the signs and magnitudes of the regression coefficients we here 
exemplify how to read Figure 2.3. 

A positive regression coefficient in Figure 2.3 indicates an increase in the 
performance indicator when the corresponding model term has a positive 
value. For example, a positive bias in DO5 will result in an increased NITeff 
and Nrem since the regression coefficients for DO5 are positive (yet small) in 
Figure 2.3. Note that a positive bias in DO5 will result in a lower DO concen-
tration than the desired setpoint. Similarly, negative coefficients for a biased 
NH sensor indicate the opposite relationship. That is, a negative bias in the 
ammonium sensor (and likewise an increased effluent ammonium) will in-
crease NITeff and Nrem as indicated in Figure 2.3. 

The magnitude of a regression coefficient for a main effect should be inter-
preted as - the impact on the process indicator for a unit change in the factor 
related to the coefficient, while keeping remaining factors constant. Here, a 
unit change is defined as a 1 mg/L bias for DO and ammonium sensors, and 
500 mg/L bias in the SS sensor (Section 2.2.2). As an example, the regression 

a) b) 
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coefficient for the NH sensor main linear effect is -0.17 (Figure 2.3(b)). This 
indicates that a 1 mg/L ammonium sensor bias is expected to reduce NITeff 
with about 17 percent on average from the linear effect. 
 

 
Figure 2.4. Observed (simulated) and predicted values for NITeff (a) and Nrem (b) 
from the RSM model (note that ‘Predicted’ refers to the regression model prediction 
and ‘Observed’ are the computed values from the dynamic model simulations). Each 
circle represents one simulation with a combination sensor bias magnitudes and in-
fluent variations given by the Box-Behnken experimental design. Interaction effects 
between several biased sensors can be assessed since the biased sensors are not eval-
uated one-at-the-time. Squares are the reference simulation with normal influent var-
iations and no sensor bias. 

2.3.2 Ammonium sensor bias  
A bias in the ammonium sensor had the largest influence on both NITeff and 
Nrem, as remarked in Section 2.3.1. When both quadratic and linear effects are 
added (as a straightforward summation), a bias in the NH sensor showed the 
largest impact on NITeff of all factors. The reduction in NITeff was about 25 
percent for a 1 mg/L bias as predicted by the regression model (Figure 2.3). 
A large effect from bias in the NH sensor was expected, since it is the key 
information used in the NH-controller. This reduction in energy efficiency is 
larger than what is expected to be gained from the ammonium cascade feed-
back controller in the first place (compared to DO-controllers with fixed set-
points), see (Åmand 2014). This emphasizes the importance of unbiased meas-
urements to achieve the desired benefits from automatic control. 

The reason for the reduced NITeff was that a positive NH sensor bias will 
result in a lowered effluent NH concentration that requires more aeration en-
ergy per mass nitrified nitrogen. In effect, the ‘true’ NH-setpoint is 0 mg/L at 
1 mg/L bias and 1 mg/L NH-setpoint. To reach such low NH effluents, exten-
sive aeration is required. The NH-controller solved this by assigning high DO-
setpoints close to, or at, the maximum setpoint-limit during peak loads, with 

a) b) 
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a poor NITeff as consequence. The opposite reasoning can be applied to a neg-
ative NH bias. 

A positive bias in the NH sensor did not only have a negative effect on 
NITeff, but also on Nrem (Figure 2.3(b)). Again, high DO-setpoints were the 
reason for the reduced nitrogen removal. High DO-setpoints cause a higher 
DO concentration in the last unaerated zone and the oxygen is recirculated to 
the pre-denitrification (Figure 2) resulting in a decreased pre-denitrification 
rate and Nrem. The same effect on Nrem was seen for a negative bias in DO6 
(higher DO than desired). The effect was even more pronounced when NH 
and DO6 simultaneously had a negative bias, which was amplified through 
their interaction effect (Figure 2.5). 

 

 
Figure 2.5. Interaction between NH and DO6 on Nrem. When DO6 have a negative 
bias (- 1 mg/L) simultaneously as NH sensor has positive bias (NH4 (high)) there is 
an additional decrease in Nrem. 

A negative bias in the NH sensor (lowered DO-setpoints) also led to a de-
crease in Nrem. The reason for this was that less nitrification also lowered the 
total nitrogen removal rate as less nitrate became available for denitrification. 
Note that both NH bias directions had a negative effect on the total nitrogen 
removal. This raises the question whether the NH-setpoint was optimal with 
respect to the Nrem requirement. The possibility of an optimum is further sup-
ported by the presence of quadratic NH model term (Figure 2.3(b)). The con-
sequences of a biased NH sensor for NITeff and Nrem are demonstrated in Figure 
2.6. In Figure 2.6(b), the modelled main effect (linear and quadratic) for NH 
is shown for different bias magnitudes, which indeed shows an optimum at -
0.5 mg/L NH bias. The explanation for the optimum is that for this specific 
WRRF configuration and load, a certain amount of nitrification is needed to 
obtain a low (< 0.5 mg/L) DO in the recirculation stream. This occurs at a NH 



 48 

effluent concentration of 1.5 mg/L, i.e. the optimum in Figure 2.6(b). If the 
NH effluent is larger than 1.5 mg/L, the minimum DO-setpoint at 1 mg/L in-
stead increases the recirculated DO concentration. 

 
 

 
Figure 2.6. Main effects of a biased NH sensor (± 1 mg/l) including both linear and 
quadratic model terms for NITeff (a) and Nrem (b). 95% confidence intervals are indi-
cated with dashed lines. 

2.3.3 DO sensor bias in the ammonium loop  
Bias in the DO sensor in cascade with the ammonium controller cannot be 
neglected. As noted in Section 2.3.2, increased DO concentrations reduced 
both NITeff and Nrem. Similarly, a negative bias in any DO sensor (higher DO 
than measured) also resulted in reduced NITeff and Nrem (Figure 2.3). It was 
initially expected that the NH master controller would compensate for any bias 
inside the DO slave controller. After all, a positively biased DO sensor causing 
an increase in NH effluent should be possible to compensate for with an in-
creased DO-setpoint. The mistake in the previous reasoning is that the set-
point-limits of the slave controllers were not considered. An increase in both 
the minimum and maximum setpoint-limits due to negative bias in DO4 will 
be unfavourable as shown in Figure 2.7. For example, during low loads at 
night, the minimum true DO concentration is 2 mg/L instead of the desired 1 
mg/L minimum setpoint. 
 

a) b) 
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Figure 2.7. The effect from a negative bias in DO4. Ammonia effluent (green solid 
and dashed lines) and DO setpoints (black, grey purple dashed lines) during a diur-
nal cycle. Dotted grey lines indicate DO setpoint-limits at 1 mg/L and 3.8 mg/L re-
spectively. 

It should be noted that the location of the biased DO sensor matters, since the 
impact direction was different for NITeff compared to Nrem (Figure 2.3). Bias 
in the DO4 sensor had the largest effect on NITeff, which contrasts Nrem and the 
results obtained with a biased DO6. This is in agreement with previous studies 
of the optimal DO-profile, where a lower DO in first zone was shown to be 
the most energy efficient (Åmand and Carlsson 2013). 

2.3.4 Suspended solids sensor bias 
A negative 500 mg/L bias in the SS sensor resulted in a moderate increase in 
NITeff (about 6 percent) and Nrem (about 2 percent), see Figure 2.3. This indi-
cates that there would only be positive effects from an increased SS concen-
tration. This is logical as the biomass is the limiting factor for reducing am-
monium peaks (Rieger et al. 2014). We acknowledge that the key limitation 
for reaching a high SS is the sedimentation capacity, which is not fully de-
scribed in the applied model. Especially operating issues related to the bacte-
rial sludge composition are not considered. Still, the results highlight the im-
portance to strive for the maximum practically feasible SS-concentration. We 
further expect that the impact from a biased SS sensor, on Nrem, to increase if 
the activated sludge process is operating close to its maximum capacity where 
occasional ammonium break-through is expected. This would be especially 
critical during cold wastewater temperatures where a higher SRT is needed to 
maintain nitrification. Here, the NH load was within the modelled plant nitri-
fication capacity even for the reduced SS concentration. 
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2.3.5 Interactions between sensors and influent flow variations 
As expected, a decrease in influent flow variations also led to an increase in 
NITeff. It was less expected that the effluent NH concentration decreased with 
increasing influent variations. At a first glance, this is non-intuitive but is rea-
sonable since the opposite applied for aeration energy – the aeration energy 
increased with increased influent variations. The reason is that the NH-con-
troller increases the DO-setpoint during peak loads, resulting in an increased 
nitrification at the cost of increased energy consumption. The effluent ammo-
nium concentration was below the setpoint of 1 mg/L, apart from simulations 
with a constant influent mass flow. This was not a consequence of poor tuning 
of the controller but caused by the DO-setpoint-limits. During low loads at 
night, the ammonium effluent concentration approaches zero, which should 
produce a zero setpoint value to the DO-controller. However, as there was a 
minimum DO-setpoint value of 1 mg/L, the ammonium concentration remains 
below the setpoint value until the load increases and justifies a DO-setpoint of 
1 mg/L. 

Note that in contrast to the effect from influent flow variations, there were 
no significant effects from influent concentration variations (Figure 2.3). A 
possible reason is that concentration changes are within the NH-control au-
thority and that the nitrification rate can temporarily be increased with in-
creased aeration. Such action, however, is not enough to compensate for short 
hydraulic retention times due to flow variations. This needs to be verified by 
further studies. 

There were no significant interaction terms between influent variations and 
sensor bias (apart from a minor interaction term between NH and F, Figure 
2.3(b)). This indicates that avoiding biased sensor does not become more im-
portant when influent variations increase, compared to when the influent flow 
is constant. The results, however, may be different during storm water condi-
tions, or when a sudden load increase temporary exceeds the plant treatment 
capacity. 

Apart from the interaction between bias in NH and DO6 mentioned in Sec-
tion 2.3.2, there were no large interactions between a pair of two biased sen-
sors. Thus, we should expect that the combination of several biased sensor 
will not be more problematic, compared to the problems caused by bias in the 
individual sensors, one at the time. The lack of non-linear interaction effects 
opposes the common assumption of the non-linear nature of wastewater treat-
ment models. Instead, the result indicated fairly linear changes for the studied 
scenarios, which can simplify and reduce the needed scope for future studies. 
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2.4 Discussion 
The consequences of sensor bias are discussed in wider context, including re-
lation to costs in Section 2.4.1. The impact from bias direction and the inter-
play with controller setpoint-limits are discussed in Section 2.4.2 and Section 
2.4.3, respectively. The impact on effluent permits is analysed in Section 
2.4.4. The applicability of the RMS method is evaluated in Section 2.4.5. Fi-
nally, possible mitigating actions are considered in Section 2.4.6. 

2.4.1 Sensor bias impact on costs 
A negative bias in the NH sensor will cause an increase in electricity costs due 
to the reduced NITeff. For the studied 750,000 p.e. WRRF, a 1 mg/L NH sensor 
bias (consistently during a full year) would correspond to a substantial annual 
cost increase, equivalent to employing eight full-time instrument technicians 
(!). Similarly, the added energy cost for a biased DO sensor would correspond 
to one additional instrument technician, despite the small change as measured 
in percentages. The motivation for sensor maintenance and purchasing the 
best available NH sensor is obvious. 

In practice we should only expect biased sensors for part of the time. The 
probability of having a biased sensor is not easy to estimate as it would require 
a redundant and accurate reference sensor. A cost benefit analysis of condi-
tion-based sensor maintenance, in contrast to the current time-based sensor 
maintenance, would motivate further studies about the probability of biased 
sensors in practice. 

The results demonstrated that cost and energy reduction enabled by ad-
vanced automatic control, can be easily lost using inaccurate on-line sensor 
measurements. This is rarely considered during benchmarking of new control 
strategies. Therefore, we suggest a critical review of aeration control strate-
gies, with respect to their sensitivity towards biased sensor measurements. 

2.4.2 Sensor bias direction matters 
Only a negative bias in DO sensors and positive bias in the NH and SS sensors 
had a negative impact in NITeff and Nrem. It is problematic with an undesirable 
negative DO-bias since the common problem with biofilm formation on elec-
trochemical membrane-based DO sensors has been shown to cause such neg-
ative drift (Samuelsson et al. 2018). In Samuelsson et al. (2017), there were 
indications of a negative drift in an ion-selective NH sensor, although the drift 
direction was not studied in detail. In general, research about sensor drift di-
rection in practice has been limited to a few studies (Ohmura et al. 2019, 
Samuelsson et al. 2018, Thürlimann et al. 2019). For that reason, we also lack 
knowledge about whether different sensor technologies result in different drift 
direction, for example caused by fouling. The findings here emphasise that 
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knowledge about sensor drift direction is essential. Further studies are needed, 
especially for NH and SS sensors.  

Apart from the bias direction, it was remarked in Section 2.3.3, that the 
location of a biased DO sensor had an impact on NITeff and Nrem. This 
knowledge should be considered when sensor maintenance routines are devel-
oped to prioritize the sensor maintenance order. During such prioritization, 
large interactions between two biased sensors should also be considered, 
which would here apply to NH and DO6.  

As mentioned, it is still not fully understood whether drift direction can 
differ between different sensor technologies, and even between different sen-
sor makes. If so, the expected drift direction should be considered already dur-
ing the sensor procurement. The expected drift direction would be essential 
product information.  

2.4.3 The interplay between controller setpoints and sensor bias 
Ammonium cascade feedback control is reliant on DO setpoint-limits to avoid 
undesirable DO concentrations. The influence from how these setpoint-limits 
are assigned increases when sensor bias is considered. The common strategy 
is to assign tight setpoint-limits, e.g. limit DO between 1 and 2 mg/L. This 
will avoid unfavourable excess aeration during peak loads at the cost of re-
duced disturbance rejection rate. Tight limits will also reduce the impact from 
biased sensors as a negative 1 mg/L DO bias in practice instead would lead to 
setpoint-limits between 2 and 3 mg/L. Using only a fixed DO-setpoint of e.g. 
2 mg/L would minimize the influence from a DO bias to +/- its magnitude. A 
better approach would be to tighten only the setpoint-limit that will be affected 
by the expected drift direction. For example, an expected negative drift direc-
tion for the DO sensor would lead to too high DO concentrations. A slightly 
lower maximum DO setpoint of e.g. 1.5 mg/L could counteract unnecessary 
aeration in the presence of bias, at the cost of reduced disturbance rejection 
capability. 

In this study a proper anti-windup has been applied. Problems related to 
absence of anti-windup are expected to increase with biased sensors. The rea-
son is that the NH-controller would operate at its setpoint-limits during longer 
periods due to the sensor bias. 

2.4.4 Sensor bias impact on effluent permits 
Sensor bias will have an impact on achieving effluent permits. Many WRRFs 
have permits for the maximum effluent ammonium concentration. The time-
scale for this maximum differs between countries and WRRFs. In Sweden, 
yearly or monthly maximum mean values are prevalent, but other countries 
require appliance for shorter timescales. This will influence which amplitude 
and time period that can be accepted with sensor bias, while still satisfying 
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effluent requirement. Thus, the importance of sensor bias is clearly both 
WRRF and regulatory specific and the methodology applied here could read-
ily be extended to include such aspects. 

Seasonal variations, such as cold wastewater temperature during winter-
time in Sweden, could impact the nitrification efficiency substantially. When 
approaching the minimum SRT, the consequence of a biased SS-sensor would 
be of increasing importance. Similarly, an (undesired) reduced aeration due to 
bias in either a DO or an NH-sensor could then become more critical than was 
observed here. A relevant future study would therefore identify controller set-
points that lies in the borderline for critical SRT, minimum temperature and 
maximum influent flow. We expect that the optimization tools in RSM would 
be feasible for this purpose and could be an extension of the methodology 
applied here. 

2.4.5 Benefits and risks with response surface methodology 
The main benefit with using response surface methodology (RSM) compared 
to evaluating scenario by scenario is that a good overview of the key influen-
tial sensor bias can be obtained with less effort. This can guide new rules-of-
thumb that can be used in practice, for example, “avoid negatively biased NH 
and SS sensors both for cost and nitrogen removal reasons”. 

One drawback of the RSM is that the obtained regression coefficients only 
indicate the average effect, and that there may exist combinations of biased 
sensors that produce results deviating from what the regression model pre-
dicts. This risk increases when a full factorial experiment is reduced by e.g. 
Box-Behnken design which was applied here.  

The regression coefficients cannot be interpreted separately but require a 
causal interpretation from the simulations. Otherwise, the possibility to trans-
fer the insights to similar systems will be limited. 

The RSM methodology resembles a sensitivity analysis. A sensitivity anal-
ysis for optimizing controller setpoint values could also have been used to 
analyse sensor bias impact. Thus, the dual goal of process optimization and 
critical sensor analyses can be performed simultaneously and would likely in-
crease the motivation for executing similar studies in practice. 

2.4.6 Preventive actions to mitigate negative effects from 
biased sensors 

Based on the results from this simulation study some practical advice can be 
given:  

 
1. The most common drift direction and expected magnitude should 

be assessed for the current plant conditions and seasonal variations; 
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and sensor makes. This will make it easier to identify critical prob-
lems in practice. If simulations are to be conducted, this will also 
reduce the need to simulate and interpret non-existing sensor bias 
combinations. 

2. The impact from the DO controller’s setpoint-limits should be stud-
ied and assigned while considering the expected sensor drift direc-
tion.  

3. A multi-criteria analysis should be conducted to identify which of 
the expected harmful effects from biased sensors that are the most 
important. A trade-off between treatment costs, treatment effi-
ciency, and achieving effluent permits ought to be identified. From 
such analysis, the most critical sensor(s) with respect to bias can be 
identified. Consequently, the maintenance of these sensors should 
be prioritized. 

4. It could also be possible to facilitate detection of biased sensors by 
transferring knowledge about fault symptoms indicated in the sim-
ulations to the operator or fault management system. For example, 
if a positive drift in the NH sensor is expected to produce a higher 
DO-setpoint than desired, then the operator should monitor the du-
ration of maximum DO-setpoints during peak loads, as they will be 
affected by such bias. 

2.5 Conclusions 
There is an obvious need to assess the reliability of on-line sensor data used 
for automatic control. This aspect is not commonly included in control system 
benchmarking but is critical to assure that the real system is optimized at re-
alistic conditions. It is concluded that: 

 
• Biased sensors and influent variations considered as separate fac-

tors have a large impact on nitrification energy efficiency and less 
impact on total nitrogen removal. The impact from biased sensors 
do not however increase as influent diurnal flow and concentration 
variations increase. 

• To implement preventive measures, it is important to know the ex-
pected sensor bias direction. Positive bias in NH and SS sensors 
and negative bias in DO sensors should be avoided to maintain a 
high total nitrogen removal and energy efficient nitrification. 
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3 Fault signatures and bias progression in 
dissolved oxygen sensors 

Biofilm fouling is known to impact the data quality of sensors, but little is 
known about the exact effects. In this chapter we study the effects of artificial 
and real biofilm fouling on dissolved oxygen (DO) sensors in full-scale water 
resource recovery facilities, and how this can automatically be detected. Bio-
film fouling resulted in different drift direction and bias magnitudes for optical 
(OPT) and electrochemical (MEC) DO sensors. The OPT-sensor was more 
affected by biofilm fouling compared to the MEC-sensor, especially during 
summer conditions. A bias of 1 mg/L was detected by analysing the impulse 
response (IR) of the automatic air cleaning system in the DO sensor. The IR 
is an effect of a temporal increase in DO concentration during the automatic 
air cleaning. The IRs received distinct pattern changes that were matched with 
faults including: biofilm fouling, disturbances in the air supply to the cleaning 
system, and damaged sensor membrane, which can be used for fault diagnosis. 
The results highlight the importance of a condition based sensor maintenance 
schedule in contrast to fixed cleaning intervals. Further, the results stress the 
importance of understanding and detecting bias due to biofilm fouling, in or-
der to maintain a robust and resource efficient process control. 

3.1 Introduction 
The dissolved oxygen (DO) concentration is a key measured variable in Water 
Resource Recovery Facilities (WRRFs). Two measurement technologies are 
common, membrane electrochemical (MEC) and optical fluorescent (OPT) 
measurement techniques. The MEC type was originally described in (Clark 
1959) and the OPT type was introduced by Demas et al. (1999). 

On-line DO measurements have been commercially available since the 
1970s and have enabled the development of automatic DO control (Olsson et 
al. 2005). Typically, the DO concentration is maintained at different DO set-
points at different zones using multiple DO sensors to enhance biological ni-
trogen removal. Moreover, multiple parallel treatment lines result in a large 
total number of installed DO sensors. As an example, the two WRRFs in this 
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study, Bromma (Sweden) WRRF (about 300,000 p.e.) and Henriksdal (Swe-
den) WRRF (about 750,000 p.e.) make use of 30 and 21 DO sensors, respec-
tively. 

Regardless of measurement technology, a sensor has to be clean to provide 
accurate measurements. Inaccurate measurements used in a feed-back control 
loop may result in an undesired DO concentration and potentially reduced 
treatment efficiency or unnecessary aeration (with associated increasing 
costs). Therefore, visually inspecting the sensor, its manual cleaning, and 
readings verification are needed on a regular basis to guarantee accurate read-
ings. Current sensor verification practice, as in (International Organization for 
Standardization 2012), rely on assessing sensor readings under predefined 
conditions. For dissolved oxygen sensors, oxygen free water solutions and 
water saturated air are commonly used. Such actions are however time-con-
suming, especially for WRRFs with many and possibly remotely located DO 
sensors. In sewage measurements, specific systems have been developed to 
resist biofilm fouling and pro-long maintenance intervals (Li et al. 2017). The 
need for prolonged sensor maintenance is also highlighted in (Thürlimann et 
al. 2018), where a qualitative soft-sensor approach was developed to replace 
an ammonium sensor with high maintenance requirements.  

There are multiple sensor fouling sources in WRRFs that originate both 
from the influent wastewater stream and the treatment process itself. The foul-
ing sources include: solids deposition (biofilm formation, chemical precipita-
tion, sludge, and plastic products), hair and fibres, and grease (WEF 2013). In 
this study, we consider DO sensors located in the activated sludge process 
where the main fouling substance is from biofilm formation. In the following 
we use the term biofilm fouling to distinguish fouling from biofilm formation 
and other fouling sources. 

In WRRFs, most sensor manufacturers provide optional automatic air 
cleaning that extends the required time interval for manual cleaning. The air 
cleaning results in a temporal increase in the DO concentration, which we fur-
ther denote as an air cleaning IR. Andersson and Hallgren (2015) showed that 
the IRs contain information about the degree of biofilm fouling. A similar ap-
proach was suggested by Spanjers and Olsson (1992), where a change in the 
time constant of the DO sensor was shown to be a good indication of an arti-
ficially fouled DO sensor. 

Although there are reasons to believe that the IR of an automatic air clean-
ing system can be used to detect biofilm fouling, we lack knowledge about the 
robustness and sensitivity of using the IRs to detect different levels of biofilm 
thickness. Andersson and Hallgren (2015) detected a bias in an OPT-sensor 
of -0.6 and -0.8 mg/L due to biofilm fouling during two one-month experi-
ments. Additional experiments are required to study the IRs during clean and 
fouled conditions in order to extend the knowledge about IRs for biofilm foul-
ing detection. In this study, we were therefore interested to investigate: 

 



 59

• The lowest detectable bias due to biofilm fouling using the response 
time method 

• The variations in IR patterns of repeated biofilm fouling procedures 
and at different process conditions 

• Whether both MEC- and OPT type DO sensors are applicable to 
bias detection with IRs 

It is a common assumption that biofilm formation on a DO sensor affects its 
readings. As an example, Yoo et al. (2008) assumed that sludge clogging of 
the DO sensor can result in a complete sensor failure as a part of a simulation 
study. Hsu and Selvaganapathy (2013) used yeast and nutrient mixture in la-
boratory experiments to compare the effect of biofilm growth (in terms of pro-
tein absorption) on Teflon coated DO sensor membranes with silicone rubber 
alternative. Janzen et al. (2007) found indications of negative drift due to bio-
film fouling in a redesigned MEC-sensor positioned in the ocean. Carlsson 
and Zambrano (2016) studied how bias in DO-sensors could be detected by 
comparing the air-flow ratios. However, there are few studies, apart from 
(Andersson and Hallgren 2015), that have investigated the effect of biofilm 
fouling on DO sensors under real conditions in WWRFs. Our general under-
standing about the effects of biofilm fouling is further complicated by: 
WRRF-specific process conditions, seasonal variations, and differences be-
tween sensor types and brands. These aspects are fundamental to understand 
in order to design a cost-effective sensor maintenance schedule. Therefore, we 
were also interested to study the bias progression due to biofilm fouling under 
real conditions for MEC- and OPT type DO sensors. 

In this study, we conducted long-term experiments under full-scale condi-
tions with artificial and real biofilm fouling with two sensor techniques: MEC- 
and OPT DO sensors. Further, we studied the applicability of the response 
time method to detect biofilm fouling and worn out sensor membranes. 

3.2 Materials and Methods 
Two experiments were conducted, one with artificial biofilm fouling (grease) 
and one with real biofilm fouling. The purpose of evaluating both artificial 
and real biofilm fouling was to study two aspects: variation in IRs during dif-
ferent process conditions and long-term time effects on IRs and bias from bio-
film fouling. The two aspects require different studies since long-term studies 
are difficult to repeat under different conditions. Both aspects need to be con-
sidered to evaluate the usefulness of IRs for fouling detection. The experi-
mental set-ups differed between the two experiments and are detailed in the 
following two sections. 
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3.2.1 Experiment 1 - Artificial biofilm fouling experiments in 
Henriksdal WRRF 

The first experiment was conducted in Henriksdal WRRF with artificial bio-
film fouling to investigate: 

 
• The shape change of a fouled sensor’s IR at a small bias (<0.2 

mg/L), i.e. the detection sensitivity of using IR for biofilm fouling 
detection. 

• The effect of different process conditions on the IRs, including var-
ying DO and suspended solids concentration. 

• Variation in the response time during clean and fouled conditions 
during repeated experiments. 

• The difference between MEC and OPT-sensors in terms of a re-
sponse to artificial biofilm fouling. 

The artificial biofilm fouling experiments were carried out in Henriksdal 
WRRF during summer conditions with a wastewater temperature of about 19 
°C. Four locations in the activated sludge process (ASP), both in aerated and 
unaerated zones, were considered to study the impact of different DO concen-
trations. Parts of the measurements were conducted in the return sludge chan-
nel to study the impact of high suspended solids concentration on the IRs. 

3.2.1.1 Artificial biofilm fouling 
In the artificial biofilm fouling experiments, the goal was to decide and apply 
a fouling substance to the DO sensor that fulfilled the following three criteria: 

 
• It should be simple to repeatedly apply and remove without dam-

aging the sensor. 
• It should be similar to organic biofilm, or at least result in a small 

negative bias. 
• It should remain fixed to the sensor during repeated air cleaning 

impulses. 

During one experiment, the fouling procedure consisted of the following three 
steps: 

1. Compare test sensor measurements with reference DO sensors; 
2. Repeat IR measurements with clean test sensor; 
3. Manually foul test sensor with an artificial biofilm fouling sub-

stance and repeat IR measurements during fouled conditions. 

3.2.1.2 Sensor set-up and data collection 
Five DO sensors (Cerlic O2X DUO) were connected to a data acquisition sys-
tem with hardware and software from National Instruments, with the software 
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LabVIEW. Data were stored in a PostgreSQL database in the same laptop 
computer. Each DO sensor could be switched between MEC- and OPT meas-
urement technology by simply changing the top part of the sensor. A photo of 
the experimental equipment is given in the Supplementary materials S3.1. 

Two of the DO sensors, one OPT- and one MEC-sensor, were used to study 
IRs (test sensors) and two were used as references (both MEC-sensors). The 
third reference sensor was used as a back-up in case of a failing sensor. All 
sensors were mounted at rods according to the manufacturer’s instruction at a 
slight angle (5-30°) and at 0.5 m depth. All membranes were replaced with 
new ones and calibrated in the beginning of the experiments. The length of an 
air cleaning impulse was set to 15 s at 2 bar for the two test sensors, which 
was expected to be sufficient to obtain a clear IR, even for high DO concen-
trations (4 mg/L). 

3.2.1.3 Data pre-processing 
Data were sampled with 8 Hz and later down-sampled to resemble full-scale 
conditions. First, the data were low-pass filtered (anti-alias filter) and after-
wards down-sampled to 1 Hz. Details about the data pre-processing are given 
in the Supplementary materials S3.1. 

A reference DO concentration was calculated from the two reference sen-
sors by their variance weighted least squares (WLS) estimate, see e.g. (Kay 
1993). Then, the bias for a test sensor for a given IR was calculated as the 
difference between the test sensor and WLS-estimate for the time interval be-
tween two IRs. 

3.2.1.4 Measurements 
The measurements were conducted at two positions in the aerated zone, in the 
anoxic zone, and in the return sludge channel. At each position, the three-step 
fouling procedure was repeated multiple times. 

3.2.2 Experiment 2 – Real biofilm fouling on a full scale in 
Bromma WRRF 

In the second experiment conducted in Bromma WRRF, real biofilm growth 
was studied for 7 months to investigate: 

 
• fault progression in terms of bias due to biofilm fouling; 
• difference in bias magnitude between MEC- and OPT-type sensors 

due to biofilm fouling; 
• sensitivity to detect bias using the response time of an IR; 
• variation in the response times for IRs, both for normal and fouled 

conditions; 
• impact of seasonal variations on biofilm growth and bias. 
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Bromma WRRF had a conventional ASP operated at 6 parallel lines with 
seven zones per line. The sensors in the ASP experience severe biofilm growth 
compared to other facilities in the city. Despite the automatic air cleaning sys-
tem in the DO sensors, manual cleaning is required and conducted between 
one time a week or month, depending on the biofilm growth magnitude.  

3.2.2.1 Sensor set-up and data collection 
One MEC- and one OPT-sensor were used as test sensors. The sensors were 
positioned in the ASP in zone 5 (OPT-sensor) and zone 6 (MEC-sensor) about 
1 m apart of the existing DO sensors that were used as references (MEC-sen-
sors, Cerlic O2x DUO). Both zones were continuously aerated, but their DO 
set-points differed slightly (4.0 mg/L in zone 5 and 3.5 mg/L in zone 6). 

Both test and reference sensors were equipped with automatic air cleaning 
system, performing a cleaning cycle every second hour. The air pressure was 
set between 0.8 and 1.1 bar for each sensor. Both test and reference sensors in 
each zone were cleaned simultaneously so that their initial DO concentration 
would be equal. 

Data from test and reference sensors were stored in the existing process 
database with 1s sampling time. 

3.2.2.2 Measurements 
Each experimental period consisted of monitoring the biofilm growth on two 
test sensors until both received a bias larger than 0.3 mg/L. The bias was cal-
culated as the mean difference in DO concentration between the reference- 
and test sensor during the period bounded two consecutive IRs, i.e. 2 hour 
mean values. The reference sensors were manually cleaned and inspected in 
addition to the automatic air-cleaning which was assumed to be sufficient to 
remove biofilm growth on the reference sensor. We expected a time between 
1 and 4 weeks to obtain a bias above 0.3 mg/L in the test sensor. 

3.2.2.3 Software calculations and data availability 
The response time of an IR was defined as the time to reach 63 percent of the 
peak amplitude, see Figure 3.1(a) for an illustration. The initial DO concen-
tration was calculated as the average DO concentration 5s before the IR. A 
short function computing the response time is provided in the Supplementary 
materials S3.1. All calculations and data pre-processing were performed off-
line in MATLAB. The pre-processed data from both artificial and real biofilm 
growth experiments are available at www.ivl.se under Creative Commons 0 
license (CC0). 
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3.3 Results 
The results from experiments in Henriksdal and Bromma WRRF are described 
in Section 3.3.1 and Section 3.3.2, respectively. 

3.3.1 Experiment 1 - Artificial biofilm fouling experiments in 
Henriksdal WRRF 

The results include illustrations of the selected artificial biofilm fouling sub-
stance, motivation of discarded experimental data, and graphs showing varia-
tions in IRs during non-faulty- and different faulty conditions. 

 

 
Figure 3.1. a) Ten IRs from a non-faulty MEC-sensor (solid grey lines) and the esti-
mation of the response time (t63) for one of the curves (dashed black line). All IRs 
were normalised by subtracting the initial DO concentration of its IR for illustrative 
purposes. The response time (RT) is indicated as the time from the start of the clean-
ing procedure (time after impulse = 0), to reach 63 percent of the peak value. b) Cor-
relation between the initial DO concentration and the IR rise magnitude of clean 
MEC-sensors. The straight line, which is the least squares fit indicates a small nega-
tive correlation (-0.29 mg/L per 1 mg/L). 

A wide variety of fouling agents were evaluated. A mixture of ball-bearing 
grease and floating grease from the pre-sedimentation fulfilled the three crite-
ria for artificial biofilm fouling described in the Materials and Methods sec-
tion. Both MEC- and OPT-sensors obtained a negative bias when fouled with 
the grease mixture. The same effect was seen for the OPT-sensor with organic 
biofilm fouling (Andersson and Hallgren 2015). Similarly, our own (un-
published) experience suggests that a completely fouled MEC-sensor display 
0 mg/L, thus a negative bias as well. Photos of artificially fouled sensors can 
be compared with real biofilm fouling in Figure 3.2. 

a) b) 
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Figure 3.2. a) Artificially fouled MEC-sensor with a mixture of ball bearing grease 
and pre-sedimentation grease before an experimental procedure (2015-07-24). b) 
MEC- and (c) OPT-sensor after repeated air cleaning impulses (2015-08-04). Note 
the effect of the three air cleaning nozzles that resulted in a partly cleaned MEC-sen-
sor in (b). d-g) Different stages of biofilm fouling on MEC-sensor (d-f) and OPT-
sensor (g). Fouling time: d) 12 days (18/10), e) 27 days (14/11), f) 62 days (19/12 ), 
and g) 62 days (19/12). Note that the biofilm starts to grow in the circular gap be-
tween the senor and the sensor body (d), and further expands over the entire sensor 
and rod (e-f). 

During the experimental start, the OPT-sensor was damaged and data from the 
OPT-sensor were not further considered. Instead, both test sensors were of 
MEC type which allowed the simultaneous comparison of fouled and clean 
MEC-sensors. 

A majority of the fouling procedures for the MEC test sensor resulted in 
the desired bias magnitude between 0 and 0.2 mg/L with clear IRs. However, 
for two of the initial fouling procedures, the average bias was larger (-1.7 and 
-0.35 mg/L). Similarly, a negative bias between -0.27 and -0.51 mg/L was also 
seen for the clean test sensor during the same time period. The data were stud-
ied in detail, which revealed that part of the bias was an effect of large varia-
tions in the reference measurements (see the Supplementary materials S3.1). 
Since it was not possible to explain the reason for the variations, data with an 
absolute bias larger than 0.2 mg/L were not further evaluated. Also, seven IRs 
showed deviating shape with double peaks. Those IRs were discarded and re-
moved from the normal dataset. The double peak behaviour was noticed after 
repeated manual fouling and subsequent cleaning which could have affected 
the membrane. The potentially damaged membrane was replaced after notic-
ing the double peak behaviour. 

a) b) 
c) 

d) e) f) g) 

c) 
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The remaining data were pre-processed and the IRs were extracted from 
the pre-processed data and grouped according to their status (normal or 
fouled). This resulted in 50 normal IRs and 2628 IRs for fouled conditions. 

3.3.1.1 Variations in IRs during normal conditions 
Well-defined IRs were obtained for the MEC-sensor. A typical set of IRs at 
non-faulty conditions were shown in Figure 3.1. The rise magnitude variation 
(the difference between initial and maximum DO concentration during one 
IR) was about 0.5 mg/L (Figure 3.1(a)). Part of this variation was a conse-
quence of a changing initial DO concentration (Figure 3.1(b)). 

3.3.1.2 Identification of common sensor faults 
In addition to the artificial biofilm fouling, accidental faults occurred over the 
experimental period, common faults that could happen during everyday oper-
ations. The accidental faults resulted in distinct changes in the IRs, specific to 
the different accidental faults. The mean values for the faulty IRs are visual-
ised in Figure 3.3. 

 
Figure 3.3. Mean MEC-sensor IRs for: (a) Fouled membrane (grease mixture). 
Mean IR of fouled test data (black solid and dashed lines, n=2628). (b) Low air 
pressure during the automatic air-cleaning procedure (n=9). (c) The effect of in-
creasing the suspended solids from 2500 mg/L (normal SS, n=9) to 8500 mg/L (high 
SS, n=10). (d) A potential gradual wear out effect by repeated IRs on a fouled MEC-
sensor. An increased wear out of the membrane is indicated by darker grey 
(n=2180). (e) A mechanically perforated membrane during manual cleaning (n=2). 
(f) The effect of using harsh cleaning liquid to remove excess grease (n=98). The air 
cleaning impulse was between time 20 and 35s. 

a) b) c) 

d) e) f) 
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Fouling the MEC-sensor with grease mixture resulted in a dampened IR with 
an extended time to regain the original DO concentration (Figure 3.3(a), solid 
and dashed black lines). The small tweak during the impulse rise was not a 
typical pattern, but was merely an effect of combining IRs with two different 
shapes: one part of the dataset of the fouled IRs displayed a “double peak 
behaviour” similar to Figure 3.3(d), whereas one set had a straight increase 
with dampened IRs similar to Figure 3.3(b). 

In the end of the experimental period, a long-term test for 11 days was con-
ducted, where the MEC-sensor was fouled and subject to repeated cleaning 
events about 200 times per day. This was far more than the recommended 
amount of cleaning procedures, which resulted in a gradual change of the IR, 
potentially due to wearing out the membrane (Figure 3.3(d)). It is interesting 
that the shape of the IR changed from a dampened IR to exhibit increasingly 
pronounced double peak behaviour. A double peak was also seen for the dam-
aged membrane (perforated during manual cleaning) (Figure 3.3(e)). We have 
no clear explanation for the double peaks although they were present more 
frequently in faulty data, especially where the membrane was mechanically 
damaged. The first peak coincided with the duration of the air cleaning im-
pulse whereas the second peak was delayed compared to a normal IR. 

A decreased air pressure for the automatic air cleaning system resulted in a 
dampened peak (Figure 3.3(b)). Measurements in the return sludge channel 
with high suspended solids (SS) only indicated a slight increase in the peak 
height of the same order of magnitude as the normal variation (compare Fig-
ure 3.1 and Figure 3.3(c)). This indicates that the SS-level had none or minor 
impact on the IR. A large increase of the IRs peak value after cleaning the 
MEC-sensor with harsh cleaning liquid (Figure 3.3(f)) indicates that the mem-
brane became more sensitive. 

3.3.2 Experiment 2 – Real biofilm fouling experiments in 
Bromma WRRF 

The results first illustrate the impact of biofilm fouling on bias progression 
and the correlation with IR response time values. Then, variations in the re-
sponse time values for clean sensors are shown together with the impact on 
the IRs of damaged sensors. Last, uncertainties in the results due to sensor 
maintenance during the experiments are detailed. 

3.3.2.1 Bias progression due to biofilm fouling  

Different stages of biofilm growth fouled sensors can be seen in Figure 3.2 
with resulting bias progression in Figure 3.4. 
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The bias progression differed between the MEC- and OPT-sensors in several 
aspects (compare top graphs in Figure 3.4(a) and (b)). Firstly, the OPT-sensor 
had an increasing bias in all six periods in contrast to the MEC-sensor which 
mainly had a decreasing bias (period 1, 2, and 5). Secondly, the bias magni-
tude was larger for the OPT-sensor compared to the MEC-sensor. Lastly, the 
OPT-sensor showed a transition in bias progression from linear to exponential 
increasing after 10-14 days during period 1-3 and after 28 days during period 
4-5. The MEC-sensor showed a linear bias trend throughout all periods. Note 
also that the bias in the OPT-sensor temporary decreased after reaching a large 
value (above 2-3 mg/L) in period 2-5. 

3.3.2.2 Bias detection with the Response time estimation method 
The changes in response times due to bias (bottom graphs in Figure 3.4(a) and 
b) were not as evident as expected. For the OPT-sensor, there was a clear 
change in period 2-5 for bias larger than 1 mg/L and a correlation between 
bias and the response time values was identified. For the MEC-sensor, there 
was no obvious change in response time that correlated to the bias magnitude 
in any of the periods (Figure 3.4(b)). Only a slight increase in the variance for 
the response time values in period 2 (days 15-20) and period 5 (days 35-60) 
was indicated. 

3.3.2.3 Variations in response time values 
Surprisingly, the response times also changed for the reference sensors during 
the experiments. First, a small trend of decreasing response times with about 
1s per 30 days can be seen for the OPT-sensor’s reference (period 1-3) and for 
the MEC-sensor’s reference (period 1-2). This is similar to the artificial bio-
film fouling experiments where the MEC-sensor had a decreasing response 
time during the wearing out experiment (Figure 3.3(d)). A similar decrease 
can also be noted for the OPT test sensor by comparing the response times 
during the first days in each test period (period 1-5). Note that there is an op-
posite trend with increasing response time values for the OPT-sensor’s refer-
ence and for the MEC test sensor (period 4-6). Second, the new MEC-sensor’s 
reference had larger variations in its response time values, with a large in-
crease in variation during period 5-6. 

The OPT-sensor had in general a lower response time than the MEC-sen-
sors (recall that all reference sensors were MEC-sensors). Note also that the 
MEC sensors had different response times at clean conditions with new mem-
branes. 

The response time values for the OPT test sensor in period 6 deviated con-
siderably from previous periods. The reason was an accidental kink in the air 
supply hose that blocked the air supply to the sensor’s air-cleaning system 
disabling all IRs after period 5. The estimated response time values were 
therefore randomly obtained. At the same time, its reference sensor was in-
stead given a surplus of air resulting and an increase in IR peak value (see the 
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Supplementary materials S3.1). Surprisingly, there was no large change in the 
response time for the reference sensor (Figure 3.4(a), period 6) despite the 
increased airflow rate and pressure. 

3.3.2.4 Damaged sensors 
After the final experimental period, both test sensors were deliberately dam-
aged to study mechanically worn out sensors. The MEC-sensor’s membrane 
was perforated with a needle and later with a screw-driver and the OPT-sen-
sor’s fluorophore coating was scratched with an iron brush. Photos of the dam-
aged sensors together with corresponding IRs are provided in the Supplemen-
tary materials S3.1. 

For the MEC-sensor, both the needle and screw-driver perforation resulted 
in a double peak behaviour as was seen in Figure 3.3(d), although with a 
smaller initial peak than previously observed. About half of the IRs with nee-
dle perforation showed a dip instead of a double peak. There was only a minor 
change in bias due to the perforation events (before perforation 0.37 mg/L, 
after needle perforation 0.49 mg/L, and after screw-driver perforation 0.42 
mg/L). 

For the OPT-sensor, the IRs maintained a one-peak shape characterised by 
decreasing response time values with increasing amount of scratches. The first 
scratches did not result in any bias change although the following scratches, 
which removed > 50% of the fluorophore coating, resulted in a large negative 
bias (before scratching -0.54 mg/L, after first scratching -0.51Mg/L, and after 
second scratching -1.54 mg/L). 

3.3.2.5 Sensor maintenance 
After period 2, a new membrane was installed in the MEC reference sensor. 
The existing membrane was moved to the OPT-sensor reference sensor. The 
reason for replacing the membrane already after 2 months was to assure that 
the observed small bias was an effect of biofilm fouling and drift in the test 
sensor, and not of a drift in the reference sensor. 

In period 3, the MEC test sensor showed a segmented line with both in-
creasing and decreasing bias trends within the segments. The root cause for 
the segmentation was the manual cleaning of the reference sensor (vertical 
dashed lines) which coincides with the line segments (Figure 3.4(b) period 3). 
Since the bias changed when the reference sensor was cleaned, this indicates 
that the reference was also affected by biofilm fouling. This was not seen in 
the remaining periods where a weekly manual cleaning interval seemed to be 
sufficient. 

For period 3, it is therefore hard to draw conclusions about the bias direc-
tion since we are not certain whether it was the reference or test sensor (both 
of MEC type) that was actually drifting. In addition, the last three manual 
cleanings were conducted during the vacation period by personal unfamiliar 
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with the experiments. This resulted in an uncertainty whether only the refer-
ence sensor or both the test and reference sensors were manually cleaned. The 
third last cleaning (day 21 for MEC-sensor and day 12 for OPT-sensor) intro-
duced a change in bias, similar to what would be expected after cleaning the 
test sensor. In addition, the exact time locations for the last three manual clean-
ings events were not obtained, but only the actual date. Therefore, these clean-
ings were marked at 12:00 and should be interpreted with a ± 4 hours’ uncer-
tainty. 

3.4 Discussion 
The outcomes of Experiment 1 (artificial biofilm fouling) and Experiment 2 
(biofilm fouling) are discussed and compared with existing results. Further, 
implications of the findings are discussed with the perspective of using IRs 
for fault detection in a full-scale application. This includes the aspects of: bias 
progression linked to sensor maintenance, DO process control, and factors 
with an impact on the IRs and their potential limitations on a full-scale fault 
detection and diagnosis application. 

3.4.1 Bias progression in oxygen sensors due to biofilm fouling 
The purpose of using grease in the artificial biofilm fouling experiments was 
to resemble organic biofilm growth. The results showed that the MEC-sensor 
received a negative bias for both artificial and real biofilm fouling. However, 
the effect on the IRs was larger for small bias with grease compared to the real 
biofilm. It is difficult to conclude the true explanation for the difference. Alt-
hough we can intuitively assume that grease resulted in a denser film com-
pared to a water permeable biofilm, which may have contributed to the differ-
ence. 

For the OPT-sensor, all real experiments resulted in a positive bias which 
is in contrast to the results by Andersson and Hallgren (2015). Despite the 
difference in bias direction, the detection sensitivities were in the same range 
(1.0 mg/L compared to 0.6-0.8 mg/L in the previous study). The OPT-sensor 
had in addition a faster increase in bias than the MEC-sensor. No results for 
the MEC-sensor were reported by Andersson and Hallgren (2015), but their 
unpublished data suggest that the bias was small for the MEC, in contrast to 
the OPT-sensor, which agrees with this study. A potential explanation for the 
large impact on OPT-sensor is that the small fluorophore area was more easily 
covered by biofilm, compared to the larger membrane area in the MEC sensor 
(compare Figure 3.2(g) with Figure 3.2(f)). Additional studies are needed to 
verify whether this is valid in general or only for the specific sensor make in 
this study. Future studies should compare parallel treatment lines and different 
WRRFs as this may contribute to variations in a biofilm growth. 
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As expected, both sensor types had a faster bias increase during summer 
conditions compared to winter conditions. However, the magnitude of this 
seasonal effect was larger than expected. The time to reach a bias of 0.3 mg/L 
was less than one week for the OPT-sensor during summer conditions, and 
beyond 60 days for the MEC-sensor during wintertime. The large span shows 
the importance of designing an adaptive sensor cleaning schedule when com-
pared to a fixed interval of one or two weeks, which is common practice today. 

3.4.2 Oxygen sensor bias implications for process control 
As seen from a process control perspective, knowledge about the bias progres-
sion is important. That is, does a fouled sensor result in a positive or negative 
bias, or even alternate between the two? When a DO sensor is used in a feed-
back control loop (which is de facto standard), a bias in the sensor will lead to 
different consequences depending on: the bias direction, the controller struc-
ture, and the controlled process. 

Consider a MEC sensor with a strictly negative bias that is operating in a 
feed-back loop with a fixed DO-set point. The true DO concentration will be 
underestimated resulting in excess air supply with a higher DO concentration 
than desired. Consider instead the same MEC-sensor but in an ammonium 
cascade controller where the effluent ammonium adjusts the DO-set point. In 
such situation, the exact DO concentration will be less important since the bias 
will be partly compensated by the DO-set point given by the ammonium mas-
ter controller. The opposite argumentation applies for a strictly positive bias 
as was indicated for the OPT-sensor. Whether a positive or negative drift di-
rection is bad or worse depend on the process configuration. This raises the 
question whether the most likely bias direction for a specific sensor should be 
included in the early process design. 

3.4.3 Factors affecting the impulse responses and response time 
values 

One of the questions in this study was to investigate the impact of changed 
process conditions on the IRs and the corresponding response time values. 
This was mainly conducted for the MEC-sensor due to the damaged OPT-
sensor in Experiment 1. Some of the factors, such as varied SS or initial DO 
concentration were well studied during the artificial biofilm fouling experi-
ments, but the interpretation of normal variations in response time values re-
main uncertain. The main problem was that the response time values differed 
between the clean MEC-sensors. The variation in response time values for the 
new membrane in the MEC-sensor’s reference sensor in period 3 was larger 
than for the other MEC-sensors. In addition, it was not possible to define the 
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reason for the long-term small change in response time values with both de-
creasing and increasing values. As seen in the artificial experiments, decreas-
ing response time values could be a consequence of wearing out the mem-
brane, but the results in Experiment 2 indicate that the decrease could equally 
well be related to a temperature, seasonal, or unknown effects. Only a few 
sensor individuals were used in the study, which raises the question whether 
some of the noted changes are effects of variation among sensor individuals. 
Note that it is not clear from the results whether variations in the IR and its 
related response time are due to factors that are independent of sensor bias or 
e.g. seasonal effects that only affect the dynamics of the IR. 

Future studies should therefore both study potential seasonal effects in the 
response time as well as multiple parallel sensors to distinguish variations in 
sensor individuals from general effects. In future studies it is also important 
to avoid ambiguities in bias estimation about whether it is the reference-, test 
sensor or both that are affected by biofilm fouling. Regular checks of the sen-
sor reading in known zero-valued and saturated oxygen conditions should be 
used as supplement to the reference measurements.  

3.4.4 Fault detection and diagnosis based on impulse responses 
The lowest detectable bias with the response time method was larger than the 
desired 0.3 mg/L. It is therefore interesting to further study if other fault de-
tection algorithms can improve the detection sensitivity. Based on the bias 
progression, biofilm fouling detection would be most valuable during summer 
condition when the biofilm growth is fast with a high likelihood of obtaining 
a bias. Summer is also the time of year when personal resources may be lim-
ited due to vacations at the same time as ammonium effluent permits can be 
stricter than during wintertime (in Sweden). Therefore, automatic biofilm 
fouling detection in DO sensors has the largest potential to improve process 
treatment during summertime. 

The results also showed that the IRs contained information about different 
faults including: reduced air supply in the air-cleaning system of the sensors 
and damaged sensor membrane. These faults gave rise to distinct pattern 
changes in the IRs, fault signatures, extending the possibility of fault detection 
to diagnosis. Most importantly, double peaks were evident in both Experiment 
1 and 2. By studying unpublished data in the study by Andersson and Hallgren 
(2015), we noted that both the double peak behaviour (Figure 3.3(d)) and the 
extreme peaks (Figure 3.3(f)) were present in that dataset. The results suggest 
that a double peak indicates a damaged membrane, although the size of the 
first peak differed for different wearing or perforation causes. We have no 
physical explanation for the double peaks, although it seems like the first peak 
is aligned with the 20s long air-cleaning phase. As repeated perforation exper-
iments are costly, the existence and occurrence of double peaks should be 
evaluated on a full scale, studying a more natural occurrence of double peaks. 



 73

An important question to answer is how early before complete sensor failure, 
a double peak arises. 

3.5 Conclusions 
The results have improved our knowledge of how biofilm fouling impacts the 
data quality of DO sensors. The bias progression speed due to biofilm fouling 
differed between sensor types which need to be considered in fall-back strat-
egies for process control. In addition, the bias progression was faster during 
summer conditions compared to winter conditions. The results could be used 
to design effective sensor maintenance routines and to detect and diagnose 
sensor faults. This is a step towards an increased robust wastewater treatment 
with decreased environmental impact. 

The results showed that IRs and related response time values contained in-
formation about the status of both MEC- and OPT-sensors. Bias due to biofilm 
fouling was detected for bias above 1 mg/L in OPT-sensor but not for values 
up to 0.8 mg/L in the MEC-sensor. Surprisingly, changes in the pattern of IRs 
were matched to common sensor faults in the MEC-sensor, suggesting that 
such fault signatures can be used for fault diagnosis. 

The OPT-sensor was affected by biofilm growth to a greater extent than the 
MEC-sensor, with a positive bias compared to the MEC-sensor with mainly a 
negative bias. Without manual cleaning or fault detection, it is likely that a 
DO-controlled process will be operated at a different (unknown) DO concen-
tration than desired, especially when an OPT-sensor is used. Whether this is a 
general draw-back for the OPT-sensor compared to the MEC-sensor or not 
should be studied in future studies. Future studies should also consider the 
following questions: 

 
• Can other fault detection methods be applied to the IRs and improve 

the bias detection sensitivity? 
• Which type of faults can be diagnosed based on IR data, and which 

fault diagnosis methods are suitable for this task?  
• What is the normal variation in response time values and shapes of 

IRs with respect to seasonal variations, among multiple sensor in-
dividuals of the same brand, and in relation to sensor bias? 
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4 Practicability of mass balance-based data 
reconciliation for process rate monitoring in 
water resource recovery facilities 

Accurate flow and concentration measurements are central for process 
monitoring in water resource recovery facilities (WRRFs). Data have be-
come abundant, but also difficult to overview and assess, with a fre-
quently questioned accuracy. Data reconciliation based on mass balances 
has emerged as one solution to these issues. However, the experience with 
data reconciliation has been limited to a few studies where short-term 
(weekly) updates needed for process monitoring have not been consid-
ered. Additionally, there are no guidelines for tuning the underlying data 
reconciliation parameters such as the error covariance matrix. These 
shortcomings make it difficult to appreciate the practical usefulness of 
data reconciliation in the context of process monitoring. In this study, the 
merits and pitfalls with data reconciliation applied to process monitoring 
were evaluated in a seven months long monitoring campaign. Challenges 
to balance theoretical assumptions with opposing practical limitations 
were identified, and advices to mitigate pitfalls were provided. A struc-
tured approach was proposed for assigning the error covariance matrix 
and further compared with a common ad-hoc approach. The results indi-
cated that the error covariance matrix may have a major impact on the 
reconciled values and gross errors detection, which has not yet been made 
clear in the literature before. Further, the data reconciliation successfully 
detected measurement errors, inconsistencies in mass balance assump-
tions, and large process rate changes. Ultimately, the findings imply that 
the added value of data reconciliation is first, to bring structure to data. 
Next, to detect gross errors, and last, to improve the accuracy of data. 

4.1 Introduction 
Data availability has transitioned from being a bottleneck, to currently over-
whelm process operators with an abundance of on-line sensor and laboratory 
(lab) data. The usage of on-line sensor data has diverged from the original 
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drivers of automatic control (Olsson 2012), to multiple purposes with an im-
pact on all parts of the water resource recovery facility (WRRF) organization 
(Corominas et al. 2018). For this reason, it has become increasingly important 
to identify and remove inaccurate data from what is used for further analysis. 
This is especially important when big sets of data are combined for critical 
decision support such as process monitoring. 

Process monitoring involves early warning of unexpected process upsets, 
which for example can be caused toxics in the influent (Ren 2004). The follow 
up of process rates constitutes a similarly important monitoring tasks. For in-
stance, controlling the denitrification rate by addition of external carbon 
source is associated with costs (Wang et al. 2017) and greenhouse gas emis-
sions (Willis et al. 2017). Nitrification and denitrification process rates (re-
ferred to hence forth as de-/nitrification) can be determined by lab experiments 
and batch tests (Loosdrecht et al. 2016), although such tests are time-consum-
ing and not routinely performed. Instead, the abundance of data is used for 
monitoring the conversion of nitrogen concentrations (ammonium, nitrate, 
and nitrite) throughout the process. A better overview of current process rates 
would be obtained if mass flows were monitored instead of concentrations. 
This, however, is rarely possible because part of the flows and concentrations 
remain unmeasured (despite the abundance of data). It is also common that 
some measurements are unreliable due to the harsh measurement environment 
and therefore cannot be used. Thus, if mass flows are to be evaluated, they 
need to be estimated from existing, possibly inaccurate data.  

Mass balance-based data reconciliation has been successful in addressing 
the occasionally low data quality in WRRFs (Le 2019). Data reconciliation 
has also shown useful for detecting and correcting gross errors in WRRF ap-
plications (Puig et al. 2008). The method has been well-described in e.g. (Ro-
magnoli and Sanchez 1999) and has also been demonstrated useful with real 
data in other industries (Câmara et al. 2017, Moreno et al. 2019, Özyurt and 
Pike 2004). In fact, data reconciliation is available as commercial software 
packages for industries (Câmara et al. 2017) and has not been limited to mass 
balance-based methods. Gaussian mixture models (Xie et al. 2018), principal 
component analysis (Fuente et al. 2015), and kernel principal component re-
gression (Marimuthu and Narasimhan 2019) are examples of methods that 
have also been used for data reconciliation. The most common method is how-
ever to minimize estimation errors in a (non)linear system of constraints with 
weighted least squares (Câmara et al. 2017). This method has been dominating 
in WRRF applications (Le 2019, Puig et al. 2008, Spindler 2014), and will 
also be considered in this study. 

One limitation of applying (the weighted least squares) data reconciliation 
is that current guidelines for assigning the error covariance matrix, Σ, in the 
least squares approach are inapplicable for WRRF data. Two approaches have 
been suggested where Σ is either: i) estimated from data alone (Direct ap-
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proach), or ii) estimated from data in combination with linear constraints (In-
direct method) (Romagnoli and Sanchez 1999). However, both approaches 
fail if data contain gross errors (i.e. biased measurements) and assume a pro-
cess in steady-state. Benqlilou (2004) pinpoints that the key issue in real in-
dustrial environments (for calculating Σ), is to separate process dynamics from 
measurement errors. 

In WRRF-related studies so far, expert knowledge has been the dominating 
strategy to assign Σ, and no studies seem to clearly describe their reasoning 
behind this essential step. Le (2019) reviewed four data reconciliation studies 
and found that in none of them there was a clear motivation for how and why Σ was defined. One possible reason for the lack of transparency is that Σ has 
so far been assigned ad-hoc, which can be difficult to motivate in a research 
paper (although this is not necessarily wrong). 

This study evaluates the practical usefulness of mass balance-based data 
reconciliation in the context of process monitoring. A 7 months long measure-
ment campaign was conducted on a full-scale pilot WRRF (65,000 p.e. pilot 
in Käppala WRRF, Sweden) with a whole range of available on-line sensors 
and lab measurements (sludge-, water phase and off-gas) to assess a realistic 
data complexity. We propose a transparent method for assigning the error co-
variance matrix and compare it with an existing ad-hoc method, and the over-
all influence of the error covariance matrix on the data reconciliation results 
and gross error detection capability. Ultimately, this study aims to contribute 
to better data usage in WRRFs by revealing pitfalls and their solutions for 
bringing data reconciliation into practice. 

4.2 Material and Methods 
The methodology (Section 4.2.1) describes how the study was conducted to 
evaluate the practicability of data reconciliation. The process configuration is 
described in Section 4.2.2 with targeted process indicators in Section 4.2.3. 
Then, the data reconciliation procedure and gross error detection tests (Section 
4.2.4) and mass balance constraints (Section 4.2.5) are described along with 
the measurements (Section 4.2.6) and assumptions (Section 4.2.7) that under-
lies the mass balances. A new method to assign the error matrix is proposed 
in Section 4.2.8, which is later compared with the ad-hoc approach (Section 
4.2.9). Last, the data processing and a data quality index are described in 
4.2.10. 

4.2.1 Methodology 
Five process performance indicators related to de-/nitrification were studied 
during a 6 months long pilot plant measurement campaign during different 
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denitrification process modes. The usefulness of data reconciliation for pro-
cess monitoring was assessed by, first, evaluating how well the reconciled 
process performance indicators could describe changes in denitrification pro-
cess modes and known process disturbances. Second, by comparing the agree-
ment between theoretical, reconciled values and one laboratory measurement 
campaign. Last, the reconciled denitrification rate (as one representative pro-
cess indicator) was compared with its analogous rate computed from unrec-
onciled data. The impact from the error covariance matrix, on the reconciled 
denitrification rate and gross error detection distribution, was evaluated by 
comparing three different methods for assigning the error covariance matrix. 
The contribution from an increased redundancy and measurements was finally 
evaluated by evaluating the change in gross error detections, due to succes-
sively adding mass balance groups as constraints in the data reconciliation. 

4.2.2 Process configuration and operation 
The pilot plant (Figure 4.1) is a treatment line separated from the full 510,000 
p.e. Käppala WRRF. The original purpose with the pilot plant was to evaluate 
the pre and post-denitrification capacity in a future process solution. In this 
study, three different process modes were considered (Table 4.1), which sim-
ulated different nitrate loads with resulting changes in pre and post-denitrifi-
cation rates. The three modes were produced by adjusting the nitrate recircu-
lation to the pre-denitrification and the addition of external carbon to the post-
denitrification. In high carbon, nitrate recirculation was shut down to force all 
denitrification to the post-denitrification zone, and simulate a high nitrate load 
and resulting external carbon consumption. The normal carbon mode used 
both pre- and post-denitrification. The low carbon mode only used pre-deni-
trification and no added external carbon. External carbon was only added to 
the post-denitrification zone in normal and high carbon mode. More details 
about the pilot plant are provided in Supplementary materials S4.1. 

Table 4.1. Process modes used to produce different denitrification rates during the 
measurement campaign. The process mode low/normal/high carbon refers to the 
amount of external carbon added to the post-denitrification (zone 8). 
Process mode External carbon dosage Nitrate recirculation 

Low carbon None Active (3-5 x Qasp) 
Normal carbon Fixed amount Active (3-5 x Qasp) 
High carbon Maximum pump capacity Off 
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4.2.3 Process performance indicators 
Two types of process performance indicators (referred to hence forth as pro-
cess indicators) were defined to exemplify variables used for process moni-
toring. The process indicators reflect Process rates and Efficiency (Table 4.2). 
The de-/nitrification rates were normalized with respect to volatile suspended 
solids concentration, hence the specific de-/nitrification rates. Note in Table 
4.2 that the theoretical specific nitrification rate  and the optimal specific 
denitrification rate  were temperature adjusted with a correction factor . 
The purpose was to enable a fair comparison with the rates based on recon-
ciled values, which were obtained for different temperatures. The correction 
factor  is detailed in Appendix A4.1 and was suggested by Henze et al. 
(2002). 

4.2.3.1 Process rates 
The theoretical specific nitrification rate  was estimated using traditional 
process stoichiometry, literature coefficients and mean process values and is 
detailed in Appendix A4.1. 

The largest practically feasible (referred to as ‘optimal’) specific denitrifi-
cation rate was estimated from batch lab experiments. These showed 4.4 and 
9.2 g N2/kg,VSS,h for pre- and post-denitrification, when compensated to the 
same temperature (20°C) by applying a standard temperature correction factor 
as in (Henze et al. 2002). The optimal specific denitrification rate in practice, 

, was then defined as the average value of the two rates, weighted by the 
(mass) external carbon to the post-denitrification ( ) that would 
give a complete external carbon usage. The proportion of external carbon was 
based on the chemical oxygen demand (COD) with the optimal denitrification 
rate defined as 

 
 = 9.2 82.86 +  4.4 1 − 82.86  (4.1) 

4.2.3.2 Efficiency process indicators 
Three efficiency process indicators for de-/nitrification and carbon source uti-
lization were defined. The first two measures simply describe the percentage 
de-/nitrification compared to complete de-/nitrification (Table 4.2). The third 
measures carbon efficiency as the efficiency factor in (Henze et al. 2002) and 
indicates the percentage of carbon (in terms of COD) that was used for deni-
trification and biomass production, in proportion to the total carbon removal 
(including oxidation of COD into CO2 ( )). Note that the efficiency 
factor in Table 4.2 only considers biologically removed carbon in the ASP, 
and neglects COD variations in the effluent and primary sludge.
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4.2.4 Data reconciliation and gross error detection 
The weighted least square data reconciliation problem is defined as 
 

 
  ( − ) ( − ) . .  = 0 

(4.2) 

where  is the mean of the measured data,  is the estimated (or reconciled) 
values,  is a set of linear constraints in the form of mass balances, and Σ  
is the inverse of the related error covariance matrix, see (Romagnoli and 
Sanchez 1999) for further details. The mean value  (and the reconciled value) 
are obtained for a certain time window, which was here one week. 

The constraint = 0 is an equality, which can be solved with the La-
grange multiplier method. Extensions exist, which also include inequality con-
straints that can be solved using non-linear programming as in (Lid and 
Skogestad 2008). The constraints can also be a set of non-linear equations, 
such as bi-linear constraints. An extensive comparison of different numerical 
methods for solving (4.2) with different constraint variants is given by Câmara 
et al. (2017). 

The MATLAB implementation by Le et al. (2018) was used to solve (4.2), 
which uses the Lagrange multiplier method (Romagnoli and Sanchez 1999). 
The constraint equations  contain both linear and bi-linear mass balance 
equations and are described in Table 4.4. One key feature of the used imple-
mentation is that the subset of mass balance constraints that only contain 
measured variables so-called active constraints are identified (here denoted 
active constraints). The active constraints facilitate the initial data reconcilia-
tion procedure by providing direct estimates of the unmeasured variables. The 
steps to executed in this study are given as a typical sequence in  Table 4.3, 
although the process was iterative in practice. 
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 Table 4.3. The steps in this study for planning, executing, and evaluating data and 
related process indicators with data reconciliation. 
Data reconciliation workflow 
Data and problem preparation 
1. Define key variables that are required to compute process indicators 
2. Identify current process layout and measurements  
 - Identify mass balance constraints from the process layout 
 - Identify existing measurements of variables in mass balances 
3. Make assumptions that can replace unmeasured variables 
4. Assign error covariance to all measurements 
5. Run experimental design (Le et al. 2018) and identify redundant and unmeasured 

variables that needs to be measured 
6. Complement existing measurements, with additional sensors and lab measurements 

based on results in Step 5 
7. Process data 
 - Pre-process time series and replace outliers with Not-a-Number (NaNs) 
 - Make concentration measurements flow proportional 
 - Compute mean values for a 7 days long time window 
Execute data reconciliation 
8. Reconcile data 
 - Estimate unmeasured flows using linear constraints 
 - Derive active constraints 
 - Make initial estimate of unmeasured variables based on active constraints 

 
- Perform bi-linear data reconciliation using the Lagrange multiplier method 

using the method in (Le et al. 2018) 
Evaluate results 
9. Test for gross errors 
 - Perform gross error test and identify potentially biased measurements 
 - Take action to mitigate potential sensors errors 
10. Assess process indicators 
 - Compute process indicators from reconciled values 
 - Assess data quality used to compute process indicators 
 - Interpret process indicators and monitor the process 

Three conventional gross error detection tests were considered, all described 
in (Narasimhan and Jordache 2000) and their test statistics are given for the 
linear criterion in (4.2) for clarity. 

The global test gives an overall indication of the presence of any gross error 
in the full system of constraints. The global test statistic  is defined as  
 =  (4.3) 

where  is a vector of residuals between all constraints, i.e. = − , 
and = Σ .  
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The nodal test statistic is defined as 
 

 , = | |( ) (4.4) 

for each active constraint . 
The measurement test performs one test for each measurement  using the 

test statistic 
 , = | |

 (4.5) 

for the residuals = − , where Ψ  is the -th diagonal element covariance 
matrix of the vector of residuals . Note that the measurement test can only be 
performed for variables that are reconciled and measured. 

Both the measurement-, and nodal test were adjusted to 95% simultaneous 
confidence level using the Bonferroni correction (Shaffer 1995). In short, the 
Bonferroni correction change the simultaneous confidence level, , com-
pared to the initial individual confidence limit  = 0.05 as = , 
where  in this study was number of independent measurement tests. Here, 

 was about 30 to 40 depending on how many mass balances and measure-
ments that were considered in the measurement test. 

Note also that, for every time window, the global test can produce one error, 
the nodal test can raise one error per active constraint , and the measurement 
test can produce at the most one error per measurement . 

An ad-hoc gross error detection approach was used as complement to the 
conventional measurement test (4.5). The ad-hoc error test straightforwardly 
compares the absolute percentage change between measured and reconciled 
values, with a threshold at 20% to decide gross error existence. In addition, an 
0.5 absolute difference between measured and reconciled values was also re-
quired to raise an error to avoid false alarms for variables with measurements 
close to zero. 

4.2.5 Mass balance constraints 
In total, 28 mass balance equations were defined (Table 4.4) to describe ex-
pected mass flows of COD, total phosphorous (Tot-P), nitrogen, iron (Tot-Fe) 
and total mass flows (water, sludge, and air) for the process layout illustrated 
in Figure 4.1. The mass flows describe the mass during a certain time interval 
(mass/day). The mass balances were further grouped based on the modelled 
components (middle column ‘Group’ in Table 4.4). For example, mass bal-
ance equations related to water flows were in flowMB and mass flows of Tot-
P were in tpMB. The group coreMB contained mass balances needed to com-
pute the process indicators. 



 85

Note that Table 4.4 contains more mass balances than needed to compute 
the process indicators, i.e. there is purposefully redundant information. In fact, 
a large effort was conducted to identify all available measurements, to max-
imize the usage of available data by defining the mass balances related to the 
process indicators. As an example, both fe- and tpMB were included to allow 
an improved reconciliation of the flow measurements, which were not redun-
dant. Also, the off-gas measurements (equation 15-17, Table 4.4) were added 
to produce a redundant measurement of the denitrification rate. 

As an example of how the process indicators were obtained from the mass 
balances, consider the nitrification rate (mNIT), which is included in mass bal-
ance 9,10,13,14,17, and 20 in Table 4.4. All other variables contained in these 
seven mass balances contribute to how accurate the computed mNIT will be. 
The workflow for increasing the accuracy in mNIT is to fuse all available 
measurements via the mass balances. This gives a reconciled estimate of mNIT 
that has used all available measurements and process knowledge, given the 
measurements uncertainties encoded in the error matrix.  

Variables in bold text in Table 4.4 were estimated from the mass balances 
whereas variables in normal text were measured. Before executing the recon-
ciliation in (4.2), the active constraints were identified as the minimum num-
ber of unique mass balances obtained from a Gauss elimination on the full set 
of mass balances, see (Le et al. 2018) for details. This step includes separating 
measured from unmeasured variables that needs to be estimated. 
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The mass balances describe mass flows during a given time interval =1, … ,  and form the data reconciliation constraints  in (4.2). For any com-
ponent with concentration  and flow , the empirical expected mass flow Ε[ ] is given by 

 
 [ ] = ( ) ( ) . (4.6a) 

Equation (4.6a) can be approximated by its discrete time equivalent ex-
pression, with sampling time , when sufficiently fast sampling is ap-
plied 
 ( ) ( )  ≈  1 ( ) ( ) = 

=  1   ( ) ( ) +  ( ( ) − )( ( ) − ̅) = 

= 1 ( ) ∑ ( ) ( )∑ ( ) = 

=  ∑ ( ) ( )∑ ( )  

(4.6b) 

where  is an integer denoting discrete time and  is the mean flow dur-
ing 1, … , . Note that the factor in the last term ∑ ( ) ( )∑ ( )  is the flow 
proportional mean concentration, which differs from the mean concen-
tration ∑ ( ). 
4.2.6 Measurements 
Existing measurements, mass balances and the targeted variables used to ob-
tain the process indicators were analysed for redundancy using the experi-
mental design method in (Le et al. 2018). The outcome from the experimental 
design resulted in installing additional on-line sensors: 
 

• an UV-vis sensor (S:can, Spectrolyzer) for measuring COD and ni-
trate (NO) at the influent to the ASP. 

• oxygen (O2) sensor (Servomex Multiexact 4100), and carbon diox-
ide (CO2) sensor (Vaisala, GMP343) measuring the off-gas compo-
sition. 

• a suspended solids sensor (Cerlic ITX) measuring the waste acti-
vated sludge (WAS). 
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In total, 36 on-line sensors were used (sensor type and make are given in Sup-
plementary materials S4.2), see Figure 4.1 for sensor locations. 

The existing weekly lab sampling programme was also extended, mainly 
to analyse the composition of sludge streams and external carbon source. 
Sludge analyses for WAS and primary sludge (PS) were needed to obtain suf-
ficient data for closing the mass balances. Four grab sludge samples were 
taken about one month apart targeting dry weather occasions. A set of conver-
sion factors were then computed from the four samples to convert suspended 
solids to the components COD, Tot-Fe, Tot-P, TKN, and NO. These conver-
sion factors were included in the mass balances as variables (Table 4.4). As 
an example, the SS2CODwas was the factor to convert suspended solids meas-
urements in WAS to COD. A complete list of lab samples and on-line sensor 
data is provided in Supplementary materials S4.2, and also indicated with ab-
breviations and symbols (conical flask or sensor symbol) in Figure 4.1. 

The reason for limiting the grab samples to only four was the high cost and 
that these kinds of samples are not commonly analysed for all sludge streams 
in the WRRFs in Sweden. The need for more extensive sludge sampling cam-
paigns to enable data reconciliation in a realistic setting would therefore be 
questioned by practitioners. Thus, here we used the minimum practically fea-
sible sludge analyses. 

4.2.7 Assumptions and constants 
The mass balances were simplified with regards to data collection and mass 
flow modelling by making 14 assumptions (Appendix A4.3). 

In short, the assumptions included the following. The WAS composition in 
terms of COD, NO, and TKN was assumed to be constant in relation to the 
suspended solids content. Changes in the WAS composition were assumed to 
be caused by changes in biological composition of the activated sludge. Such 
changes are slow in contrast to PS composition that is strongly affected by 
precipitation mode. Both Tot-Fe and Tot-P content in PS and WAS can change 
fast depending on the current precipitation mode and it was therefore uncertain 
whether four sludge sample were enough to obtain representative conversion 
factors for Tot-Fe and Tot-P. 

The constant airflows for incoming fresh air and off-gas ventilation in 
shafts were measured manually with a portable air velocity logger and esti-
mated to a constant value as detailed in Supplementary materials S4.1. 

4.2.8 A systematic approach to assigning the error matrix 
The inverse of Σ in (4.2) is commonly denoted as the weight matrix = Σ , 
as it weighs the residual errors during reconciliation. Due to the lack of WRRF 
applicable guidelines for defining Σ we propose a transparent and systematic 
method that is applicable to real conditions and limitations in WRRF data. The 
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method assumes that all error magnitudes can be defined as percentages of the 
mean, representing a one standard deviation if a multivariate Gaussian error 
distribution is assumed. The method is outlined in Table 4.5 and further de-
scribed in the following section. 

Table 4.5. The suggested stepwise method to define the error covariance matrix. 
A method to assign the error covariance matrix in data reconciliation 
Step 1 
 Define and assign error magnitudes for the error sources in terms of 1-std of the 

mean (assuming Gaussian error distribution) 
 a) Analytical error, lab sample (5 – 15% depending on analyte) 
 b) Sampling error, lab sample 
 - Weekly sample (20% - volume proportional sampling) 
 - Grab sample (30% - manual grab sample) 
 - Grab sampling campaign (40% - several grab samples taken to estimate a 

certain property for sludge that is expected to be constant)  
 c) Sensor error (0 – 30%, for sensors that lack a reference measurement) 
 d) Operator experience error (0 – 50%) 
Step 2 
 Identify correlated sampling and sensor errors. 
 If correlations are unknown, assume zero correlation. 
Step 3 

 

Assign the diagonal of Σ  with the squared effective standard deviation from Step 
1, and the covariance from Step 2 as off-diagonal elements. The effective standard 
deviation, , was defined as, = , + , +… , where 
the standard deviation for  error sources (both precision and accuracy) were 
summed as in (Narasimhan and Jordache 2000). 

The sampling error magnitude estimates in Step 1 in Table 4.5 represent the 
total sampling error, see (Petersen and Esbensen 2005) for a detailed descrip-
tion. Here, the tool from (Rossi et al. 2011) was used to estimate the sampling 
errors from the theory of sampling (TOS) with settings detailed in Supplemen-
tary materials S4.1 and S4.2. The main contribution to the total sampling error 
was the so-called Point materialization error (PME), which describes how rep-
resentative the sample is for the sampled stream. The PME was indicated in 
(Rossi et al. 2011) to lie between 20% for good sampling conditions in sewer 
(e.g. turbulent, well mixing), and up to 100% (laminar flow). In this study we 
therefore assumed 20% PME for weekly lab samples, 30% for grab samples 
in water phase, and 40% PME for grab sludge samples. Further, the sampling 
errors were assumed to be fully correlated for samples when multiple analyses 
were performed on the same sample (Step 2). Note that the sampling errors 
are larger than the analytical errors, which is common for heterogeneous sys-
tems. To our knowledge, there exist no practical studies that have evaluated 
whether these large sampling error are realistic in a WRRF, and the assumed 
values were therefore considered to be the best available estimates. 

Most on-line sensors in WRRFs are calibrated and adjusted based on lab 
reference measurements. Therefore, the equivalent procedure was applied for 
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assigning error magnitudes to on-line sensor measurements. The exception 
was the flow sensors, which were not calibrated with a reference measure-
ment. For those sensors, the manufacturers accuracy values were used as error 
estimates (<1%) with a possible drift range (<3%). We also added a subjective 
error term, see Step 1 in Table 4.5, for sensors with poor historic measurement 
records, potentially due to reduced maintenance or an unreliable sensor. Note 
that no precision sensor error was assumed since mean values in the order of 
one week, computed from on 1-minute sampling time, would smear out any 
random sensor noise. 

In the final Step 3, all error sources were combined to effective standard 
deviations (Narasimhan and Jordache 2000) that defines the Σ . All assumed 
error magnitudes in this study are given in Supplementary Materials S4.2. 

We should note that the effective standard deviation allows a combination 
of both bias and random errors. The Σ  will therefore deviate from the sta-
tistical assumption were only random (variance) errors are assumed. However, 
we argue that this is not a practical concern as long if we adjust our interpre-
tation of the data reconciliation outcome accordingly. 

4.2.9 The ad-hoc error approach 
As comparison to the suggested method in Table 4.5, we also defined the min-
imal error matrix Σ  as the diagonal error matrix with the smallest 1-std error 
of the mean that did not indicate a global gross error on verification data. We 
define verification data as a period of data without any known measurement 
errors, which is in contrast to the evaluation data were gross errors might be 
detected. The Σ  can be said to roughly indicate the combined quality of 
measurements and mass balances where a small value indicate only minor ad-
justments during reconciliation. The approach is ad-hoc but common in indus-
try. 

4.2.10 Data treatment and software 
The complete data collection and treatment process is detailed in Supplemen-
tary materials S4.1 and in short, all raw data were exported from the WRRF’s 
historical database with 1-minute sampling time and thereafter pre-processed 
and analysed off-line in MATLAB version R2020a. 

Quality checks were performed on all raw on-line sensor data with the goal 
to detect and remove datapoints that were most likely biased. Univariate data 
quality tests similar as in (Olsson et al. 2005) were applied including: missing 
data, running variance (low variance-identifying frozen values, high variance 
- detect too large signal variance), and rate of change (outlier detection). De-
tected anomalies by the quality tests were excluded from the mean value com-
putations by replacing them with Not-a-Number (NaN).  
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A Data error index was further developed to enable simultaneous assess-
ment of the data reconciliation as bad signal data quality. The data error index 
combines three signal error indications: 1) the percentage of variables flagged 
in the measurement gross error detection test, 2) the percentage of variables 
that contained more anomalies (NaNs indicated by the quality tests) than a 
threshold parameter .  (here set to 10% ), and 3) the percentage of variables 
with missing data, i.e. 100% NaNs from the quality tests. When all data were 
missing, the mean value in the previous time window was used as replace-
ment. 

Concentration measurements of on-line sensor measurements were initially 
made flow proportional before the mean values were computed. This was 
however problematic because the flow measurements contained too many 
anomalies in the quality checks. This was especially a problem for flows that 
were not directly measured but estimated from several other flow measure-
ments. As an example, Qpos is obtained as the sum of Qasp and Qras (mass 
balance row 4, Table 4.4). All anomalies in Qasp and Qras were then trans-
ferred to Qpos in the form of NaNs. This resulted in an accumulation of NaNs 
in Qpos, which in turn made it infeasible to compute a flow proportional mean 
value on the reduced data signal. The difference between the mean value for 
a complete concentration measurement, compared to the mean value for a 
flow-proportional-compensated concentration measurement was occasionally 
large, which indicates that a bias was introduced in the flow proportional mean 
value due to missing (or NaN) data. For this reason, the on-line sensor con-
centration mean values were instead computed directly (without flow propor-
tional compensation). This approach is the conventional approach previously 
used in e.g. (Le 2019), which has shown sufficiently accurate for improving 
the data quality and detecting gross errors. Weekly lab sample measurements 
were already obtained volume proportionally as the time window matched the 
weekly sampling interval. 

4.3 Results 
The results first evaluate how well the process indicators from reconciled data 
reflected the different process modes and observed process variations during 
the measurement campaign (Section 4.3.1). This represents the last step in  
Table 4.3 of interpreting the data reconciliation results. Then, the data recon-
ciliation validity with respect to gross errors (Section 4.3.2) is evaluated along 
with how the data quality impact the reconciled values (Section 4.3.3). Last, 
gross error detections due to combination of different mass balance groups 
(Section 4.3.4) and from different choices of the error covariance matrix is 
studied (Section 4.3.5). 
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4.3.1 Tracking process modes with process indicators 
The process indicators (Table 4.2) computed from reconciled measurements 
and the coreMB are given in Figure 4.2(a) and Figure 4.2(c), during the dif-
ferent process modes (Figure 4.2(b), Table 4.1). The periods with high data 
error index (Figure 4.2(d)), mainly due to gross error detections indicates un-
reliable reconciled values and are considered separately in Section 4.3.2. 

The nitrification efficiency was almost complete (>95%, see Figure 4.2(a)) 
apart from an initially low de-/nitrification efficiency in week 1 (Figure 
4.2(a)). The low de-/nitrification efficiencies during that week were caused by 
heavy rain and snow-melting, which required a temporally change of the aer-
ated and unaerated flex zones (Figure 4.1), to maximize the available nitrifi-
cation capacity and reduce the pre-denitrification volume accordingly. The 
aerated zones (nitrification volume) were increased by 20 percent, which was 
still not sufficient to fully compensate for the reduced nitrification efficiency. 
The specific nitrification rate was larger than the theoretical one during week 
1-15 (Figure 4.2(c)). During this period, there was a trend in increased theo-
retical nitrification rate (thin black line, Figure 4.2(c)) due to an increase in 
temperature (data not shown). A similar trend during the same time period 
was also seen in the reconciled nitrification rate, but with an off-set (thick 
black line, Figure 4.2(c)). 

Considering denitrification, the effect from the high carbon dosage mode 
(H1-H3) was most evident during H3 where the denitrification efficiency in-
creased (Figure 4.2(a)). By contrast, during H1 the denitrification efficiency 
remained constant. This was similar also for the weeks before H1 with suc-
cessive changes in the process modes (Figure 4.2(a-b)). During H2, the nitrate 
recirculation pump was only shut down during a short period of time, which 
makes H2 more similar to the normal carbon mode and therefore unsuited for 
comparison with H1 and H3. 

During both H1 and H3, the specific denitrification rate remained constant 
and similar to the preceding weeks with low and normal carbon dosage modes 
(Figure 4.2(c)). This was despite the shut-down of the nitrate recirculation 
(QNO/Qasp, Figure 4.2(b)), which was expected to substantially decrease the 
pre-denitrification and thereby the overall specific denitrification rate. To fur-
ther assess this, five grab samples of the in- and effluent nitrate to the post-
denitrification were analysed during H1. The mean value of the grab samples 
(circle, Figure 4.2(c)) indicated a lower denitrification rate of 0.016 
gN/g,VSS, day, compared to the 0.065 gN/g,VSS, day as indicated by the rec-
onciled rate (Figure 4.2(c)). Note that the specific rate for the data reconcilia-
tion (and the grab samples) was based on the total denitrification volume, in-
cluding the pre-denitrification. This results in a low overall specific denitrifi-
cation rate when, in principle, the pre-denitrification volume was inactive. Fi-
nally, the total reconciled denitrified nitrogen mass during H1 and H3 was 
large (900–1000 kg/day) compared to what could have been obtained with 
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only Qras (20–50 kg/day) in combination with the post-denitrification (about 
100 kg/day), contributing to nitrate reduction. In the end, these findings indi-
cated a substantial and unexpected pre-denitrification, possibly due to nitrate 
recirculation despite inactive nitrate recirculation pumps. Once this was real-
ized, the operational staff confirmed similar experiences and that the recircu-
lation pipe could have operated as a syphon since no valves were closed after 
the pumps. The syphon effect was not possible to verify after the measurement 
campaign since the nitrate recirculation pumps were moved. A test was how-
ever performed one year after the measurement campaign, where the nitrate 
recirculation was shut down (including the following valves in the pipe). This 
resulted in a doubled nitrate concentration in the effluent (7 mg/L to 16 mg/L), 
and likewise in the return sludge. Due to this high nitrate concentration, a 50 
percent denitrification was obtained due to the return sludge recirculation. 
However, during the measurement campaign and H1 and H3, the nitrate efflu-
ent concentration was low (3–6 mg/L) and would therefore have needed a 
higher recirculation flow to achieve the observed denitrification rates. Alto-
gether, these indications supported the hypothesis that the suspected syphon 
effect was the reason for the discrepancy between specific denitrification rate 
of grab samples and the reconciled values. 
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4.3.2 Gross errors in the flow rate and off-gas measurements  
The abundance of gross error detections during week 6-7, 14-20, and 23-25 
for the coreMB were evident in Figure 4.2, but also for all other mass balance 
group combinations (Figure 4.3(a-i)). This indicates that the flow measure-
ments were the underlying reason (since they were the common variable in all 
mass balance groups). Indeed, the gross error detections raised in the ssMB 
(that contained only flow and suspended solids measurements) were caused 
by flow measurements. Their causal problems in practice were identified in 
the process engineer’s logbook as maintenance work and process changes. 
These problems influenced the flow measurements and are further described 
in the following sections. 

Gross error detections in week 6-7, 20 and 23-25 were caused by a tempo-
rary shut-down of the sand filter, which reduced the sand filter flow (Qeff and 
Qfil) from 5000 m3/day to about 100-200 m3/day. The reasons for closing the 
sand filter was to replace sand (week 6-7) and to repair a broken hatch (week 
20, 23-25). Such changes should not raise any gross error detections since the 
changed flow is still described by the mass balances and were therefore re-
garded as a false gross error detection. 

By contrast, the gross error detections in week 14-19 were ‘true errors’ 
caused by a temporary process change, which in turn, induced a model error. 
During that time, the flow to the sand filter (Qfil) was deliberately mixed with 
the full WRRF flow to verify the functionality of the effluent phosphate sensor 
(this was needed for evaluating the pilot plant and should be considered as a 
known disturbance from the viewpoint of this study). When the flows were 
mixed, the Qfil sensor measured zero at the same time as Qeff measured the 
normal full flow, which clearly deviated from the mass balance (row 4 in Ta-
ble 4.4). From the viewpoint of the mass balance model, all suspended solids 
then needed to exit the system via the WAS, which caused unrealistic high 
reconciled suspended solids concentrations (up to five times larger reconciled 
values, than the measured values). 

The off-gas measurements also induced problems. First, the manual meas-
urement campaign for assessing incoming and effluent ventilation air pro-
duced inconsistent results (1,170,000 Nm3/day incoming air and 800,000 
Nm3/day off-gas airflow rate). This inconsistency was then needed to be com-
pensated for during reconciliation, which resulted in adjustments of the air-
flow rate rather than in the off-gas component concentrations. Next, the gas 
composition from the activated sludge process was diluted with a large venti-
lation airflow, which resulted in a mixed off-gas composition similar to out-
door air. As an example, the expected decrease in O2 off-gas (compared to 
ventilation air) was less than 10 000 ppm (1% O2) during normal nitrification. 
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Last, the off-gas pump broke down during week 4-14, which resulted in a sus-
tained period with constant O2 and CO2 off-gas measurements, i.e. missing 
data (Figure 4.2(d)). 

4.3.3 Data quality impact on reconciled values 
The impact from the data error index on the reconciled process indicators was, 
however, unpredictable. During week 14 there were both missing data and 
gross error detections, but no evident impact on the specific de-/nitrification 
rates (Figure 4.2(c-d)). By contrast, there were clear step decreases in de-/ni-
trification rates during week 15-21 and week 23-25 (Figure 4.2(c)), which, in 
part, coincided with the true gross error detections during week 14-19, and in 
part, coincided with the false gross error detections week 20, 23-25. During 
week 29, a substantial change was seen in the reconciled rates, although only 
a small number of gross error detections in combination with missing data 
were present. 

4.3.4 Balancing constraint complexity and gross errors 
As described in Section 4.2.5, groups of mass balance constraint were added 
component-wise to increase the redundancy. How an increase of these con-
straints influences the gross error detections is shown in Figure 4.3. 

When only part of the constraints and related measurements were used, for 
example the mass flows of suspended solids (ssMB), less gross error detec-
tions were obtained compared to when all balances were used (compare Fig-
ure 4.3(a) and Figure 4.3(i)). 

The absence of gross error detections in ssMB, apart from the time with 
flow errors, indicates that the suspended solids data were reliable. However, 
when they were combined with the coreMB, gross error detections were raised 
in both measurement and nodal tests (Figure 4.3(e)). During the entire exper-
imental period, the conversion factors SS2CODwas and SS2TKNwas were rec-
onciled to unrealistic values (even negative). Many of the suspended solids 
measurements were also reconciled to unrealistic values, but not sufficiently 
deviating to raise a gross error detection due to their large error variance. 
These were instead detected with the ad-hoc test (Figure 4.3(e)). This indi-
cates that the suspended solids data were not compatible with additional con-
straints, which made further use of the suspended solids conversion factors. 
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Figure 4.3. Number of gross error detections during the 7-months long experiment 
for different groups and combinations of mass balances and error matrices. Gross er-
ror detections are shown for the Ad-hoc, Global, Nodal, and Measurement (Meas.) 
test. Results from top (a) to bottom (i) are shown for increasingly larger sets of mass 
balance constraints, starting with ssMB(a), the coreMB with error matrix Σ  (b), 
diagonal error matrix (c), and minimum error matrix Σ  (d). Then, combinations 
of the coreMB with ssMB (e), tpMB (f), feMB (g), both tp- and feMB (h), and all 
mass balances in Table 4.4 (i) are shown. 

 
  

a) 

b) 

c) 

d) 

e) 

f) 

g) 

h) 

i) 
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Related to the suspended solids and conversion factors were the COD sludge 
analyses, which were problematic. Initial CODwas analyses showed about 
1000 mg/L, which was unrealistically low as indicated from the mass bal-
ances. The (accredited) lab then re-analysed all samples twice, which resulted 
in more reasonable mean values of about 10 000 mg/L. This illustrates that the 
conversion factors relating suspended solids to COD were affected by uncer-
tainties in both its constraint assumptions (A4.3, Table 4.7) and analytical pro-
cedures. 

The raised ad-hoc gross error detections for the coreMB (Figure 4.3(b)) 
indicated large adjustment in the measurements for combined COD and nitrate 
sensor, the ventilation and off-gas airflow rates, and the SSwas. All adjust-
ments were identified as true errors and possible to explain, apart from the 
SSwas that instead supports the suspicion of an inconsistency in the ssMB. The 
COD and nitrate sensor had a known drift due to biofilm fouling (despite 
weekly to twice-weekly manual cleaning), which was compensated for by the 
weekly lab samples. The inconsistency in airflow rates was explained in Sec-
tion 4.3.2. 

Any additional combinations of core-, ss-, tp-, and feMB (Figure 4.3(e)-(i)) 
resulted in severe measurement and model inconsistencies as indicated by the 
presence of gross error detections. This further indicates that neither of the 
combinations in Figure 4.3(e)-(i) were feasible for computing reconciled pro-
cess indicators. 

4.3.5 The influence from the error matrix on gross error 
detection 

The ad-hoc approach for assigning the error matrix (core(min)) produced de-
viating results, both in terms of number of gross error detections and their 
distribution, compared to the suggested method described in Section 2.8 (com-
pare Figure 4.3(b) and Figure 4.3(d)). The minimal standard deviation for the 
mean (std) was identified to 0.36 std during the verification period, which was 
much larger than the assumed 0.01 std for the flows. This is in-line with why 
fewer gross error detections were identified during the periods with errors re-
lated to the flow measurements. 

The effect from introducing correlated sampling errors in the covariance 
error matrix (Step 2, Table 4.5) had only a minor impact on gross error detec-
tions (compare Figure 4.3(b) and Figure 4.3(c)). By contrast, the reconciled 
denitrification rate was substantially lowered when only the diagonal of the 
error covariance matrix was considered (compare solid and dashed black lines 
Figure 4.4). In fact, the change in reconciled denitrification rate due to a di-
agonal error covariance matrix was, for a part of the time, larger than change 
from the combination of the core-,fe-, and tpMB (which produced abundant 
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gross error detections). The denitrified mass was used as an example of a rec-
onciled process indicator in Figure 4.4 (by contrast to the specific rate nor-
malized by VSS), due to the unfeasible reconciliation of suspended solids 
measurements, which produced occasional negative values. The basic option 
to only consider measurements and mass balances (without data reconcilia-
tion) is given with red dashed line in Figure 4.4 as comparison. 

 

 
Figure 4.4. Reconciled denitrification (Deni) rate obtained from using coreMB with 
a correlated error covariance matrix (solid black line, ‘core’), diagonal error covari-
ance matrix (dashed black line, ‘core(diag)’), and without reconciliation (red dotted 
line, ‘core(data)’). The combinations of coreMB, tpMB and feMB are given as exam-
ples and for comparison of the impact of using a constraints with abundant gross er-
ror detections (grey solid line, ‘core,tp,fe’). 

4.4 Discussion 
First, we discuss the challenge with the abundance of gross error detections 
(Section 4.4.1) and whether they were caused by assumptions related to the 
suspended solids measurements and mass balances (Section 4.4.2). Second, 
we consider the value with off-gas measurements in perspective to data rec-
onciliation (Section 4.4.3). Third, we reflect upon how violation of theoretical 
assumptions impacts the practicability of data reconciliation and the process 
indicators (Section 4.4.4). Last, we summarize pitfalls and benefits with ap-
plying data reconciliation in practice (Section 4.4.5) along with identified 
shortcomings that need further studies (Section 4.4.6).  

4.4.1 Gross error detection 
The evident result in Section 4.3.2 was the abundance of gross error detections 
when several mass balance constraints were combined. Recall from Section 
4.2.5 that several mass balances were grouped component-wise (e.g. Tot-P 
and Tot-Fe) to increase the constraint redundancy and maximize the usage of 
existing data. The results, however, indicated that it may be a draw-back to 
make use of large systems of mass balances and related measurements. The 
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spread of gross error detections in Figure 4.3 instead indicated a trade-off be-
tween maximizing the usage of available process information in terms of 
measurements and mass balances; and obtaining reconciled variable estimates 
without gross errors. It is natural that the probability to have one sensor error 
increases when the number of measurements increase, and it also becomes 
increasingly difficult to close an increasingly large system of mass balances, 
without gross errors. But the abundance of gross error detections demonstrates 
a great benefit with the data reconciliation – its ability to assess the data quality 
in terms of gross error detections based on process knowledge encoded in the 
mass balance constraints. 

The sensitivity for raising a gross error detection was clearly influenced by 
the error matrix. The suggested method in Table 4.5 combined with the meas-
urement test was too insensitive and missed a COD sensor drift and unreason-
able suspended solids values. These deviations were instead detected by the 
ad-hoc test. This emphasizes that there is a balance between how pragmatic 
and theoretically rooted the tuning of the gross error detection test should be. 
Both the Bonferroni correction and the assumed sampling errors should there-
fore be reconsidered to enable a more practically relevant gross error detection 
level. 

The large impact from the error covariance matrix on the reconciled values 
highlights that it is infeasible to use an ad-hoc approach for assigning the error 
covariance matrix. Such ad-hoc approaches could produce reconciled results, 
which would doubtfully be better than the original measured values. Note that 
it is the ratio between the variances in Σ and equation (4.2) for all variables, 
which weigh how the errors in data reconciliation are reconciled. Thus, having 
reasonable ratios between the errors for the individual variables is of main 
importance, rather than the absolute error magnitudes when considering rec-
onciled values. 

How to diagnose the root cause fault that produce gross error detections 
needs further studies. For the flow errors, the error was smeared out to addi-
tional sensors, which complicates the identification of the root cause error. It 
would be interesting to see how a sensitive analysis could complement the 
interpretation of gross error detections and the error root cause analysis. A 
sensitivity analysis would also be valuable to increase our understanding of 
the data reconciliation with all the nested variables in the mass balance con-
straints. 

4.4.2 Assumptions about suspended solids 
The assumption of constant suspended solids conversion factors needs to be 
further evaluated as the ssMB were not possible to combine with the remaining 
balances without gross error detections and unrealistic reconciled values. It is 
likely that errors in suspended solids balances (either the assumptions or meas-
urements) produced consequential errors via the conversion factors SS2TKN 
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and SS2COD. Also, the representativity of using sludge grab samples should 
be questioned. The sampling errors and measurement errors, for example, for 
COD in WAS are likely large but to our knowledge unquantified. This there-
fore needs to be better assessed in practice to increase the realism of mass 
balance-based data reconciliation. 

Similarly, reconciliation based on information from the sludge streams and 
Tot-P and Tot-Fe mass flows induced both nodal and measurement test gross 
error detections. It is likely that the changes in different process modes in the 
pilot-line opposed the assumptions about a constant Tot-P content in the 
sludge. Reconciling mass flows of Tot-P to increase data quality is otherwise 
recommended prior modelling studies (Rieger et al. 2012), which rely on more 
stable conditions. 

The problems related to suspended solids conversion factors emphasize 
that the sludge streams measurements were insufficient. For the suspended 
solids, either on-line sensors or automatic samplers could reduce the sampling 
error. For the nitrogen components, Tot-P, and Tot-Fe in the sludge, additional 
samples are needed. It is still uncertain whether such action would be enough 
to assure that measurements in the sludge stream would contribute to the over-
all data reconciliation accuracy. Ultimately, the results demonstrate the im-
portance of selecting and combining only those mass balance constraints and 
related measurements that increase the accuracy of the reconciled measure-
ments and the process indicators (instead of the opposite). In the end, the data 
reconciliation is no exception from the general assumption that poor input data 
also produce poor output conclusions. 

4.4.3 Off-gas measurements for data reconciliation 
The off-gas measurements provide an independent estimation of denitrifica-
tion as complement to liquid phase measurements and have been identified by 
as key data for mass balance data reconciliation (Puig et al. 2008). Here, the 
denitrification rate estimated solely from off-gas data produced unrealistic and 
low values due to the inconsistent flow measurements. Despite these prob-
lems, off-gas measurements can be valuable for the purpose of reconciling the 
off-gas flow rate. The flow rates here were uncertain and can be essential to 
be reconciled when process indicators related to the off-gas are of interest. 
Leu et al. (2010) studied oxygen- and carbon dioxide transfer rates to monitor 
nitrification performance. Such rates could straightforwardly be obtained from 
the set of mass balances in this study, when the off-gas flow-rate is accurately 
reconciled. Also, monitoring greenhouse gas mass emission such as nitrous 
oxide would be facilitated with a reconciled off-gas flow rate. 
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4.4.4 Process rate monitoring by data reconciling 
The results did not show the expected correlation between changes in process 
mode (Figure 4.2(b)) and denitrification process indicators (Figure 4.2(a,c)). 
An increase in denitrification process indicators was expected when, for ex-
ample, the carbon was added in normal mode compared to the low carbon 
mode. The reason for this was likely that the addition of external carbon, as 
compared to the influent carbon, was too small to impact the process indica-
tors. Note that the variations in influent carbon (mCasp) were larger than the 
variations in external carbon (mCext) between low and high carbon mode 
(Figure 4.2(b)). Only large changes such as the lowered capacity during snow-
melting were noticed. Possibly, a toxic shock could be identified. Neverthe-
less, the identification of the anticipated syphon effect and incomplete shut-
down of nitrate recirculation illustrates the value of putting a large set of meas-
urements into context. The data reconciliation allows monitoring of mass 
flows, which produce a deeper process insight compared to monitoring con-
centration measurements signal-by-signal. 

The belief that data reconciliation can improve the data quality and the pro-
cess indicators, is reliant on four theoretical requirements that underlies equa-
tion (4.2). First, no gross measurement errors are present. It is only random 
measurement variations that cause inconsistencies in the constraints, which 
should be compensated for. Second, the random measurement variations can 
a priori be encoded in the covariance error matrix, commonly assumed to be 
Gaussian. Third, the constraints are true (i.e. the mass balance constraints are 
free from modelling errors). Last, the process is in steady-state for the given 
time window. 

This study has demonstrated that these theoretical requirements may be in-
feasible to fulfil. For that reason, it is relevant to discuss whether the data 
reconciliation really improves the trueness of data (process information), and 
what random variations that can be accurately compensated for. 

Random variations in time windowed data can be caused by many factors, 
but in the current study the commonly assumed noise in sensors is not a major 
error source. The reason is that we here consider mean values for one week, 
and any high frequent (zero mean valued) sensor noise will be practically 
eliminated due to the low-pass filtering effect from constructing such mean 
values. Instead, weekly temporal variations that randomly cause inconsisten-
cies in the mass balance constraints are desired to remove during reconcilia-
tion. For example, slow temporal changes in the build-up of Tot-P or Tot-Fe 
in the sludge is expected, but not modelled, and can be considered as random 
variations. Here, these variations were likely too large to be used in reconcil-
iation as indicated by gross error detections. 

We deliberately violated the first two theoretical assumptions when sensor 
bias was included in the effective standard deviation, which was further used 
in the error covariance matrix. Biased sensor measurements are expected in 
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practice, but if they are considered as gross errors they should, according to 
theory, not be part of the reconciliation. The equation (4.2) indicates that it is 
the ratio of errors in the error covariance matrix that decide how an error is 
smeared out during reconciliation. Thus, we suggest that an initially suspected 
sensor bias could be accurately compensated for, as long as it is assigned in 
proportion to the other (variance) errors in the covariance matrix. 

In the end, this study verifies the common assumption that sensor and 
model errors are present in practice. It is within this context the data reconcil-
iation needs to be used, and to be useful, despite that this violates the theoret-
ical requirements. The error covariance matrix construction is in this aspect 
key for the data reconciliation practicability. First, it can be considered as the 
tuning parameter for gross error detection sensitivity. Second, it decides how 
the unavoidable measurement errors are smeared out throughout the mass bal-
ance constraints. The trueness of reconciled values is directly linked to how 
well the error matrix describe the true measurement errors. This is apparently 
very difficult to know, which was one of the reasons for applying the data 
reconciliation in the first place. Thus, the data reconciliation feature to detect 
gross error detections is possibly more useful in practice, than as a tool to 
improve the accuracy in process monitoring. 

4.4.5 Lessons learned 
The results in this study demonstrated both benefits and challenges when ap-
plying data reconciliation in practice. 

 
• The data reconciliation brings structure to data. It is difficult to 

overview all data flows and potential measurement errors without 
data reconciliation, which were here about 40 sensor tags and 30 
different lab samples. The application of data reconciliation re-
quires the organization of data in a structured way, where process 
knowledge in the form of mass balances is used for reconciliation. 
This enables process insights about mass flows that are not possible 
from concentration measurements alone, as was demonstrated with 
the syphon effect. The data quality assessment in terms of gross 
error detections also reduce the risk to misinterpret biased measure-
ments for process changes, which was clearly demonstrated with 
the data error index.   

• The data reconciliation provides a straightforward way for fusion 
and validation of equivalent lab and sensor measurements via the 
mass balances as indicated when the COD lab samples compen-
sated for the COD sensor drift. This enables reusage of existing 
data. 
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• The data reconciliation provides a method to highlight doubtful 
data. This can guide plant operators in prioritizing data quality im-
provement actions. 

• Weak spots in data collection that would be needed to close the 
mass balances are automatically identified during the data reconcil-
iation construction. Understanding conversions and mass flows of 
nitrogen, phosphorus, and COD is after all the core business in any 
WRRF.  

At the same time, there were challenges, which are also expected to be im-
portant elsewhere: 

 
• The need for additional and reliable lab measurements. Data from 

the sludge streams were absent and were also difficult to sample 
and analyse accurately. We expect this unfortunate combination of 
critical, but absent, data to be common for most WRRFs.  

• Sensitivity to temporary failing sensor measurements. Failing sen-
sors are a normal situation in a WRRF, and there is a large likeli-
hood that at least one measurement is missing during normal oper-
ations. If the failing sensor is also critical for the mass balances (e.g. 
a flow sensor), this can limit the usefulness of the data reconcilia-
tion completely with abundant gross error detections (worst sce-
nario) or at least require a redefinition of the mass balances. 

Ultimately, we see the practical value of data reconciliation as the combination 
of: 

 
1. Overview of mass flows and component conversions 
2. Detection of gross errors and model inconsistencies and data qual-

ity assessment 
3. Reconciliation and estimation of unmeasured data in a repeatable 

and structured manner 

4.4.6 Future work 
This study pinpoints missing knowledge related to i) the theoretical and tech-
nical aspects of the data reconciliation method, and ii) knowledge needed in 
practice for a successful implementation. The following research is suggested 
to mitigate the identified shortcomings. 

 
• Sensitivity analysis should be studied as a complementary tool for 

understanding cause and effect of discrepancies in the mass bal-
ances during the iterative data reconciliation procedure. Although 
the data reconciliation brings structure to data once in place, the 
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road to get there can be overwhelming with a large system of mass 
balances and measurements. Also, the impact of the many assump-
tions could easier be ranked in order of importance in the light of a 
sensitivity analysis. 

• The impact from flow proportional concentration mean values was 
not possible to evaluate in this study due to disturbances in the flow 
signals. The impact of flow proportional mean values should be bet-
ter studied in a computer simulation. 

• How the covariance error matrix should be assigned needs further 
studies. This is especially important for the sensitivity during gross 
error detection. 

The following practical aspects needs to be considered before wide-spread us-
age of the data reconciliation. 
 

• What error magnitudes do water and sludge sampling have in prac-
tice, and how can these be reduced by an improved sampling meth-
odology? The sampling error had a major impact here and was not 
assessed in practice but estimated from literature values. 

• In relation to the previous aspect, it is essential to establish a method 
for defining the number of required samples to obtain representa-
tive conversion factors. The conversion factors were critical for 
how the reconciled errors were distributed in the mass balances. 
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4.5 Conclusions 
Mass balance-based data reconciliation is a promising tool to gain process in-
formation from large process datasets, which here enabled computation of 
process indicators and detection of process faults such as the anticipated sy-
phon effect in nitrate recirculation. The combination of mass balances and 
reconciliation allows an iterative, but still structured path for an increased un-
derstanding of process rates and the related data quality. But data reconcilia-
tion is no magic tool. The accuracy of reconciled values will suffer from poor 
data quality, model inconsistencies, and a poorly chosen error covariance ma-
trix. Nonetheless, it is the capability to reveal these issues that makes data 
reconciliation valuable in practice.  

We conclude that 
 

• The ability to detect gross errors is promising and is possibly more 
useful than producing reconciled measurements. 

• The error matrix construction has a large impact on both reconciled 
values and gross error detection and needs to be further studied as 
practical experiences about measurement and sampling errors are 
missing. 

• A high data quality in both on-line sensors and lab measurements 
is desired to benefit from data reconciliation. Otherwise, the recon-
ciled measurements can produce unreliable reconciled values and 
process indicators.  

• Many measurements and a large system of mass balance constraints 
can decrease the usefulness of the reconciled values as the possibil-
ity to obtain gross errors increases. 

Based on the results in this study we recommend the following prior imple-
menting data reconciliation for process monitoring: 

 
• Obtain redundant flow measurements. 
• Install sludge samplers and budget for weekly analysis costs if data 

about historic sludge composition is absent. 
• Carefully assess sampling and measurement errors for the current 

system 
• Consider subsets of the complete treatment process for the data rec-

onciliation.  
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Appendix A4.1 - Theoretical nitrification rate 
This section derives the theoretical specific nitrification rate  in Table 4.2. 

 
The specific nitrification rate  is defined in (Sedlack 1991) as 

 
 =   (4.7) 

where  is the specific nitrification growth rate and  is the nitrification 
yield constant. The  describe the mass of nitrification bacteria in the vola-
tile suspended solids, which are formed per mass of nitrate-nitrogen pro-
duced during to nitrification. The specific nitrification rate can also be nor-
malized to the total volatile suspended solids by correcting for the percent-
age of nitrifiers  in the volatile suspended solids as 
 
 =  =  (4.8) 

which result in the specific nitrification rate  normalized by the total vola-
tile suspended solids, which was given in Table 4.2. 

The nitrification rate  can be estimated as a Monod-function of the 
maximum specific growth rate , , which is reduced by the nitrification 
rate limiting substances ammonium  and dissolved oxygen [ ], and 
their corresponding half-saturation constants  and  as 
 
 = ,  [ ][ ]. (4.9) 

The nitrification rate is further temperature dependent, which can be described 
by the van’t Hoff correction factor  as 

 
 =  ( ( )), (4.10) 

with  being the reaction rate at 20°C,  the current temperature and  is a 
temperature coefficient (Henze et al. 2002). 

The fraction of nitrification bacteria  was estimated from the reduction 
in substrate concentrations in the process and yield coefficients from (Henze 
et al. 2002) using  

 
 =  [ ] [ ] + [ ] (4.11) 
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where,  and , are the yield coefficients, and [ ], and [ ] 
are the reduction in ammonium and COD substrate concentrations, for nitrifi-
cation and heterotrophic bacteria, respectively. 

The constants in (4.7)-(4.11) were obtained from (Henze et al. 2002) and 
substrate concentrations in (4.9) and (4.11) were mean values from the pilot 
plant, which are all given in Table 4.6.  

 

Table 4.6. Literature values, computed coefficients and assumed substrate concen-
trations used to compute the theoretical specific nitrification rate. 
Description Variable Value Unit 

Maximum specific 
nitrification growth 
rate 

,  0.7 1/day 

Van’t Hoff tempera-
ture coefficient 

 0.1 1/°C 

Yield constants for 
nitrifier/heterotrophic 
bacteria 

/  0.15/0.39 g VSS/g substrate 

Ammonium concen-
tration effluent/re-
duced 

/[ ] 0.5/45 mg/L 

Dissolved oxygen 
concentration/COD 
reduction 

[ ]/[ ] 2/300 mg/L 

Nitrifier fraction  0.05 - 
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Appendix A4.2 - Specifying the error covariance matrix 
The error covariance matrix Σ for two variables ,  can be obtained as the 
sum of two independent error covariance matrices representing the correlated 
sampling error Σ , and the total analytical error Σ . 

 
 = +  

   
(4.9) 

The Σ  contain the independent analytical error variances in the diagonal 
 

 = , 00 ,  

   

(4.10) 

which are obtained from the analytical error in terms of one standard deviation 
and percent, , , of the measured value , , = ( , ) . Similarly, 
the sampling error can be described by an error matrix 

 
 = , ( , , )( , , ) ,  

   

(4.11) 

with the difference that the off-diagonal elements contain the covariance of 
the sampling error, which can be shown from the Cauchy-Swartz inequality. 
This results in the final error matrix 

 
 = , + , ( , , )( , , ) , + ,  (4.12) 

 
 

where Σ is the covariance matrix containing the independent analytical error 
variance  and the correlated sampling error . 

The Cauchy-Swartz inequality for correlated random variables states that  
 

 |Ε[ ]| ≤ Ε[ ]Ε[ ] =  
 

(4.13) 
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With equality iff =  for a constant ∈ ℝ. Since  and  are both Gaussian 
distributions with variances proportional to the measured mean value  

 
 ~ ( , ( , ) , ~ ( , ( , )  

 (4.14) 

They can be scaled to equal distributions if  is chosen so that =  
 

 = ~ ( , ( , ) .  
 (4.15) 

Appendix A4.3 – Assumptions related to mass balance 
constraints 

The Table 4.7 detail mass balance assumptions in Section 4.2.7.  

Table 4.7. Assumptions made during data collection (DC), component composition 
(CC) and mass balance modelling (MBs) 

 Assumption Related to 

A1 Nitrate in WAS was zero DC 
A2 Nitrate in RAS was equal to nitrate in the secondary settler DC 
A3 The off-gas air was assumed to be dry without any water vapour as the 

gas sensor was located after a condensation (dehumidifying) unit. 
DC 

A4 Incoming fresh air contained 400ppm CO2, 9300 ppm argon, 78.078% 
N2, 20.95% O2 at a mean temperature of 15 °C. 

DC 

A5 The suspended solids were conserved as a component (related to mass 
balance 22) 

CC 

A6 The ratio of TKN/SS were equal in WAS, RAS and ASP CC 
A7 The ratios between suspended solids; and TKN, COD, Tot-Fe, and Tot-

P were constant in WAS.  
CC 

A8 The ratio between DS; and Tot-Fe and Tot-P, were constant in PS CC 
A9 The composition of external carbon source (Brenntag Brenntaplus) was 

equal between delivered batches CC 

A10 The biomass and suspended solids in pre-, and post-sedimentation were 
assumed to be constant and in steady-state, i.e. no build-up of biomass 
was included in the mass balances. 

MBs 

A11 No nitrification occurred after the nitrification zone 6, with the result-
ing assumption that TKN was conserved throughout the secondary set-
tler. 

MBs 

A12 No denitrification occurred in post-sedimentation, sand filter or in the 
RAS 

MBs 

A13 The flow from external carbon source was negligible in comparison to 
the magnitude of water and sludge flows and excluded from the flow 
mass balances 

MBs 

A14 Back-wash flow in sand filter was excluded from flow balance in sand 
filter 

MBs 
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5 Gaussian process regression for monitoring 
and fault detection of wastewater treatment 
processes 

The purpose with this chapter is to evaluate a promising machine learning 
method, Gaussian process regression (GPR), for WRRF monitoring applica-
tions. We evaluated GPR at two WRRF monitoring problems: estimate miss-
ing data in a flow rate signal (simulated data) and detect a drift in an ammo-
nium sensor (real data). 

The results showed that GPR with the standard estimation method, maxi-
mum likelihood estimation (GPR-MLE), suffered from local optima during 
estimation of kernel parameters, and did not give satisfactory results in a sim-
ulated case study. However, GPR with a state-of-the-art estimation method 
based on sequential Monte Carlo estimation (GPR-SMC) gave good predic-
tions and did not suffer from local optima. 

Comparisons with simple standard methods revealed that GPR-SMC per-
formed better than linear interpolation in estimating missing data in a noisy 
flow rate signal. We conclude that GPR-SMC is both a general and powerful 
method for monitoring full-scale WRRFs. However, this study also shows that 
it does not always pay off to use more sophisticated methods. New methods 
should be critically compared against simpler methods, which might be good 
enough for some scenarios. 

5.1 Introduction 
Monitoring methods are important tools for detecting process and sensor faults 
in water resource recovery facilities (WRRFs). Faults that influence the treat-
ment process have to be detected and corrected to manage increasingly strict 
effluent demands. At the same time, automatic process control is an essential 
part of an efficient treatment process and is dependent on reliable sensor meas-
urements. 

Large amount of process data has been available at WRRFs for a long time, 
and the most studied method to exploit the data for monitoring purposes, is 
principal component analysis (PCA). Although proposed for WRRF applica-
tions more than thirty years ago (Aarnio and Minkkinen 1986), PCA is still an 
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active research area (Haimi 2016). Some of the research has been done to ex-
tended PCA to handle non-linear interactions in kernel-PCA (Lee et al. 2004), 
multiple models in Multiway PCA (Yoo et al. 2007), and in combination with 
other data processing methods (Qin et al. 2012). 

Similarly as at WRRFs, the amount of available data has increased in many 
other areas, especially where the Internet has been a driving force. Discover-
ing that data are not equivalent with useful information, large efforts have 
been done to develop computer-based algorithms that extract information 
from big data. This has resulted in a research area called machine learning, 
which can be defined as: methods that can learn and make predictions from 
data (Kohavi and Provost 1998). Machine learning has successfully been ap-
plied for monitoring processes other than WRRFs. Some examples include: 
Gaussian process regression for monitoring the melting index of polyethene 
in multigrade process (Liu et al. 2015), Deep learning for monitoring product 
quality in petroleum refinery process (Shang et al. 2014), and Support vector 
machines and k-nearest neighbourhood for classification of faults in a chemi-
cal process with incomplete data (Askarian et al. 2016). Although most ma-
chine learning methods are not new methods, they might still be new in a 
WRRF monitoring context and therefore interesting to study.  

Gaussian process regression (GPR) is one machine learning method, prom-
ising for monitoring applications at WRRFs. The method is flexible (can han-
dle non-linear problems), non-parametric (does not require parameter selec-
tion), and probabilistic (predictions include an uncertainty estimate) 
(Rasmussen and Williams 2005). In fact, these three properties have proved 
to be useful to solve problems related to monitoring including change detec-
tion (Garnett et al. 2010a), process modelling (Ranjan et al. 2016), and fault 
detection (Boškoski et al. 2015). However, few papers have studied GPR ap-
plied to WRRFs, see (Ažman and Kocijan 2007, Južnič-Zonta et al. 2012, Liu 
et al. 2016), of which only (Liu et al. 2016) studied how GPR could be used 
for monitoring purposes. Thus, GPR has not been studied to the same extent 
as PCA despite its promises.  

Although GPR is a promising method, it has two potential drawbacks that 
could limit its usage in full-scale applications. First, a proper kernel (paramet-
ric autocovariance function) has to be selected by the user, which is a key step 
in GPR. This is commonly described as a strength of GPR, since the user can 
include prior knowledge of the system by selecting a proper kernel 
(Rasmussen and Williams 2005). However, most papers that apply GPR only 
use the standard kernel and do not consider other kernels. Also, a separate 
research field has developed on how to construct new kernels, see e.g. (Du-
venaud. 2014). This indicates that kernel selection may not be as straight for-
ward as originally claimed, which could make it hard for a WRRF engineer to 
adopt GPR as a new method. 
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The second potential drawback concerns the estimation of a kernel´s pa-
rameters. Commonly, the parameters are obtained by maximum likelihood es-
timation (MLE). However, this estimation method is also known to give bad 
solutions if several local optima exist (non-convex optimization problem). 
Although the risk with local optima has been acknowledged in both textbooks 
and papers, few papers quantify its impact when GPR is applied to real prob-
lems. Any full-scale monitoring method has to be robust and deliver correct 
results every time, and it is therefore crucial to evaluate the impact of local 
optima of GPR in WRRF applications. 

To summarize, we know that GPR is a promising method that could im-
prove monitoring of WRRFs, but we lack knowledge of the impact of some 
potential drawbacks. Further, we know little about GPR applied to WRRFs 
and therefore also, how good GPR is compared to existing WRRF monitoring 
methods.  

In this chapter, we give a detailed introduction to GPR and how it can be 
applied for monitoring applications at WRRFs. Further, we study whether the 
promises of GPR are valid in a WRRF monitoring context, and whether the 
potential drawbacks of GPR can be handled. 

We introduce the theory of GPR and two variants of GPR: 1) GPR with 
maximum likelihood estimation (GPR-MLE), which is the standard approach, 
and 2) a state-of the-art variant of GPR that uses a sequential Monte Carlo 
approach for estimation (GPR-SMC) (Svensson. et al. 2015). Both GPR vari-
ants use the same model structure, a Gaussian process (GP), but they approx-
imate and estimate the GP´s parameter distribution differently. 

First, we evaluate the potential drawback with local optima in a simulated 
case study, where the monitoring problem is to estimate missing data in a flow 
rate signal. We also study whether a priori of the flow rate signal (periodicity) 
is easily included in the kernel. For both potential drawbacks, GPR-SMC and 
GPR-MLE are compared in the simulated case study.  

Second, we evaluate the most promising method, GPR-SMC, on real data 
with the monitoring task to detect a drift in ammonium on-line sensor values. 
As always, new methods should be critically evaluated and compared against 
existing methods. Here, we used linear interpolation in the first case study and 
linear regression in the second to assess the benefit of using GPR compared 
to existing simple methods. 

5.2 Material and Methods 
Gaussian process regression (GPR) combines properties from multivariate 
Gaussian distributions with Bayesian statistics to obtain a regression model 
that is flexible and give an uncertainty estimate of the predictions. First, we 
introduce the theory about GPR. Second, we introduce the two GPR variants, 
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GPR-SMC and GPR-MLE, and their differences in approximating and esti-
mating the kernel parameter distributions. Thirdly, we give a step-by-step in-
struction for applying GPR-MLE and GPR-SMC in practice. Finally, we de-
scribe the two case studies in this chapter.  

5.2.1 Gaussian processes 
Gaussian processes (GPs) have been popular for two properties. First, a GP is 
a stochastic process that is completely defined by the multivariable Gaussian 
probability distribution. Second, the best unbiased prediction is a linear com-
bination of previously observed values.  

A GP is a distribution of functions with function values ( ) at inputs  
defined as 
 ( ) ~ ( ), , = ( ), , , (5.1) 

where  is size  ×  with  inputs and  variables, and ,  expresses 
the covariance between input  and , where , = 1, … , . Thus, the indices 
 and  are not necessarily time indices, but indicate the different inputs in a 

specific data set. Note that ,  is an ×  matrix regardless of the number 
of variables. In (5.1), 
 ( ) ≜  [ ( )] (5.2) 

is the mean function, and the covariance function is defined as 
 , ≜  [ ( ) − ( )] − , (5.3) 

where (∙) denotes the expectation operator. 
The best unbiased prediction ( ∗) at one unobserved ∗, is a linear com-

bination of previous function values ( ). This holds from the general prop-
erty that two jointly Gaussian vectors, here ( ) and ( ∗) 

 
 ( ) ( ∗) ~ ( )( ∗) , , ∗,∗, ∗, ∗  (5.4) 

are also conditionally Gaussian distributed, with mean 
 ( ∗| ) = ∗,  ,  ( ) (5.5) 

and covariance matrix 
 ( ∗| ) =  ∗, ∗ − ∗,   , ∗, , (5.6) 

 



 117

this can be written as 
 ( ∗| )~ ( ∗| ), ( ∗| )  (5.7) 

where ( ∗| ) should be read as the mean of ∗, conditioned on . In other 
words, given the function values ( ), we obtain the predicted mean ( ∗| ) 
as a linear combination of the covariance between observed and unobserved 
inputs ∗,  , , and of the observed function values ( ). From 
(5.6) we also get the variance ( ∗| ) of the predicted mean, which is used as 
an uncertainty measure of the prediction.  

One limitation with GPR is that a large ×  covariance matrix has to be 
inverted to obtain the predictions in (5.5) and (5.6). The computation time 
increase exponentially with , which limits the training data to a few thou-
sand data. Approximations for handling large data have been suggested 
(Quiñonero-Candela and Rasmussen 2005) but were not considered in this 
chapter. 

5.2.2 Covariance functions 
In machine learning literature, a covariance function ,  is called a ker-
nel, where  refers to its parameters. The most common kernel is the squared 
exponential kernel 
 , =  exp − −2  (5.8) 

with the parameters  and . Many other kernels have been suggested, see 
(Duvenaud. 2014) for a recent work about the properties of different kernels 
applied to GPR. 

5.2.3 Regression with Gaussian processes 
In a general regression problem, we observe data ( ) and try to describe the 
underlying function ( ) that is corrupted by additive noise ℇ( ) 
 ( ) = ( ) + ℇ( ). (5.9) 

As an example, a linear regression problem would be to estimate  and  in ( ) = + . The standard method to solve this problem is ordinary least 
squares (OLS), which is described in statistical textbooks, see e.g. (Kay 1998). 
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In GPR, both ( ) and ℇ( ) are modelled as two independent GPs, where ℇ( ) 
is described with a constant noise  
 ℇ( ) ~ 0, , , , =  I , (5.10) 

where I  is the identity matrix. Following the law of variances for independent 
covariance functions, the covariance of the final GP model ℳ ( ) is the sum 
of the two covariance functions ,  and , , therefore we 
have  
 ℳ ( ) ~ ( ), , , , = , + ,  (5.11) 

where the regression task is to estimate the parameters  from a data set , . 
Here,  and  include all observations = 1, … ,  for  and . See (Perez-
Cruz et al. 2013) for a comparison between traditional and Bayesian regres-
sion with GPR. 

5.2.4 Bayesian regression 
Bayesian regression relies on Bayes rule which combines prior knowledge (ℳ ), together with the likelihood ( |ℳ , X) of a dataset , , resulting in a 
posterior probability distribution (ℳ | , ) according to 

 
 (ℳ | , ) = ( |ℳ , ) (ℳ )( |ℳ , ) (ℳ )  (5.12) 

In GPR, the prior knowledge (ℳ ) consists of the model ℳ , see (5.11), with 
an assumed probability distribution of the parameters ( ). For example, a 
squared exponential kernel (5.8) as prior model, means that the data in  and 

 are realizations from (5.8). The posterior distribution describes the proba-
bility of the model with parameters, given the data and prior assumptions, in 
contrast to the likelihood where the distribution describes the probability of 
data, given the model and parameters. Note that the posterior distribution 
(5.12) makes it possible to compare the probability of different models with 
each other, given the same data set. 

Predictions from the posterior model are made by using the fact that (ℳ | , ) in (5.12) is a Gaussian process, and likewise a multivariate normal 
distribution. Therefore, (5.7) can be used to obtain the predictive distribution 
of the output ( ∗| ) for a desired input ∗. Thus, the predictive distribution 
is given by 
 ( ∗| , , ℳ ) ~ ( ∗| ), ( ∗| ) , (5.13) 
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Gaussian process regression can in theory be non-parametric. To obtain a non-
parametric GPR we integrate (5.13) and the prior distribution for all parame-
ters  
 ( ∗| , , ℳ) = ( ∗| , , ℳ ) (ℳ )  (5.14) 

where the resulting predictive distribution ( ∗| , , ℳ) does not depend on 
parameter values. This procedure is known as marginalization and can be seen 
as a weighting of different models with their respective probabilities. Unfor-
tunately, (5.14) is in general analytically intractable, meaning that it has to be 
approximated in practical applications. In this chapter, we use two different 
approximations of (5.14) with two different estimation methods GPR-MLE 
and GPR-SMC. 

5.2.5 GPR-MLE: Maximum likelihood variant 
The most common approximation for (5.14) is to replace the integral in (5.14) 
with the maximum likelihood estimate (MLE). The MLE uses the parameter 
set  that maximizes the predictive density ∗ , , ℳ  

 
 = arg max (− 12 ln , − 12 , − 2 ln(2π)) (5.15) 

That is, the integral of the complete parameter distribution in (5.14) is approx-
imated with a point estimate. This approximation has two drawbacks. First, 
the solution to (5.15) is a non-convex optimization problem with multiple so-
lutions. Second, the point estimate in (5.15) is a poor estimate for parameter 
distributions with multiple modes. The impact of the second drawback de-
pends on the optimization problem and cannot be avoided. However, the first 
drawback could be relieved by using a global optimization method, instead of 
a local optimization method. Note that GOs are not guaranteed to find the 
global optimum within finite time, although they commonly provide better 
solutions than a pure local search. See (Moles et al. 2003) for a comparison of 
different GOs applied for parameter estimation of biochemical systems.  

In this chapter we used a conjugate gradient optimization method imple-
mented in Gaussian Processes for Machine Learning (GPML) toolbox 
(Rasmussen and Nickisch 2010) to estimate (5.15). The method finds a local 
minimum based on an initial start guess. We used the method since it is the 
standard optimization method implemented in the well spread GPML-toolbox 
for GPR (Rasmussen and Nickisch 2010) and simple to use. A global optimi-
zation method would be a feasible alternative for optimization problems with 
multiple local optima, but would also increase the complexity for the user due 
to tuning efforts of the GO. 
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5.2.6 GPR-SMC: Sequential Monte Carlo variant 
In this study we also considered a less common approximation of (5.14) and 
estimation method, namely sequential Monte Carlo for Gaussian processes 
(GPR-SMC) described in (Svensson. et al. 2015). Here the probability distri-
bution in (5.14) is approximated as 

 
 ̂ ( ∗| , , ℳ) = ( ) ∗ , , ℳ ( )  (5.16) 

where ( ) are  weights that are normalized as ∑ ( ) = 1. This approxi-
mation differs most notably from (5.15) due to its use of multiple estimates, 
in contrast to the single point estimate in (5.15). The multiple estimates are 
supplied by a particle filter, which in short uses a set of estimates (the parti-
cles) with different weighting, to approximate the complete probability distri-
bution in (5.14). However, note that both GPR-MLE and GPR-SMC use the 
same original model structure, the Gaussian process, but mainly differ in how 
the parameter distribution in (5.14) is approximated and estimated. 

One reason for using the more complex estimate (5.16) is that the predictive 
GPR model becomes non-parametric, or at least less dependent on the GPRs 
parameter values. This should in theory also result in a better model in terms 
of mean and variance prediction of the GPR. The drawback of (5.16) is that it 
is computationally demanding: a) when many particles are used (may be re-
quired for a good approximation of the parameter distribution), and b) for high 
dimensions (many parameter distributions to estimate). It is beyond the scope 
of this study to introduce the research area of sequential Monte Carlo methods 
and particle filters and (Schön et al. 2015) and (Gustafsson 2010) respectively 
provide thorough introductions to the two research areas. 

5.2.7 Workflow - GPR in practice  
GPR-MLE and GPR-SMC were motivated from comprehensive theory. How-
ever, we can apply the methods straightforward once a suitable kernel and 
parameter limits have been selected. The workflow for applying GPR-MLE 
and GPR-SMC step-by-step, is given in Table 5.1. 
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Table 5.1. Workflow for applying GPR-MLE and GPR-SMC in practice. 

Step GPR-MLE GPR-SMC 
1) Select kernel ,  and training data ,  
2) Set initial parameter values and optimiza-

tion settings 
Select prior parameter distri-
bution ( ) and GPR-SMC 
settings 

3) Run optimization method, find  Run GPR-SMC and approxi-
mate posterior distribution of 
parameters 

4) Select ∗ where the distribution of ∗will be predicted 
5) Predict ∗with ℳ ( ∗) Predict ∗ as a weighted 

mean of the posterior distri-
bution ̂ ( ∗| , , ℳ) 

5.2.8 Case study 1: Missing data in a simulated flow rate signal  
The purpose of the first case study was to a) serve as an introductory example 
of how GPR can be applied to univariate time series, and b) to compare the 
standard GPR-MLE with GPR-SMC and simple existing methods in a rele-
vant WRRF monitoring problem. The intention was to compare the methods 
predictive performances, and at the same time study the impact of the afore-
mentioned two potential drawbacks (local optima, and kernel selection). We 
chose the introductory problem to estimate missing data in a simulated flow 
rate signal for several reasons. 

 
• A simulated case study enables a simple comparison between true- 

and estimated values. In addition, simulations allow for repeated well 
defined experiments. 

• Missing data is a common issue in monitoring applications. Data can 
be missing due to sensor faults, data transfer issues, outliers or stuck 
values that has to be replaced (Schraa et al. 2006). 

• Well established influent flow generators exist that can generate real-
istic flow rate signals including periodicities (daily-, weekly, and sea-
sonal variations) and stochastic extreme events (rain and snowmelt 
periods), see e.g. (Gernaey et al. 2011). 

• The flow rate signal is a representative process variable for WRRFs 
since the flow is correlated to many measured nutrient concentrations. 
Thus, a majority of the monitored process variables at WRRFs exhibit 
similar characteristics such as periodicities and stochastic extreme 
events.  

• A familiar univariate estimation problem is easy to visualize and in-
terpret as an introductory example. 

Two common approaches to replace missing data are either to linearly inter-
polate over the data gap (referred to as Interpolation), or use the last known 



 122 

data point before the data gap as estimate (referred to as Last value). Here, we 
used Interpolation and Last Value to assess the benefit of using GPR-MLE 
and GPR-SMC. 

A simulated flow rate signal, resembling 10 years of influent with 15 min 
sampling time, was generated with the influent generator described in 
(Gernaey et al. 2011) with the default parameter settings. Further, we added 
Gaussian noise with two different standard deviations: 

 
• Low noise level: σ = 135 m3/h. This was equivalent to 0.5 percent 

of maximum flow rate, which is the recommended maximum re-
peatability level for measurements in Parshall flumes (Kulin 1984). 

• High noise level: σ = 3000 m3/h, which was considered to be a 
noisy but still realistic flow rate signal. 

Data were removed at 100 random positions in both the low- and high noise 
signal. This was repeated four times with gap length of 1, 8, 16, and 24 sam-
ples (15min, 2h, 4h, and 6h), which resulted in a total of eight different faulty 
signals.  

The estimation performance was evaluated as normalized root mean 
squared error (NRMSE) between the true ( ) and estimated value ( ) at each 
missing data position , normalized with the full signals, , standard deviation 

 
 = 1 ∑ ( ( ) − ( ))( )  (5.17) 

In (5.17),  is the length of the missing data gap times the total number of 
gaps. Thus, for a signal with gap length 16,  was calculated with  
equal to 1600. 

Two kernels were evaluated: Single kernel (s): the squared exponential ker-
nel in (5.8). The single kernel is indicated with a lower-case s, GPR-MLE-s 
and GPR-SMC-s. Combined kernel (c): a combination of (5.8) and a periodic 
kernel 

 
 , = , + ,   cos(2 ( − )) (5.18) 

and the combined kernel is indicated with a lower-case c as, GPR-MLE-c and 
GPR-SMC-c.  

The combined kernel was used to include our prior knowledge about the 
periodic characteristics of the flow rate signal. In this first case study, time 
was the input (regressand) expressed as  at time instant , and flow rate was 
the output (regressor) expressed as ( ).  
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A uniform distribution was used as prior distribution for parameters in 
GPR-MLE-s and GPR-MLE-c. The same interval was used to randomly ini-
tialize the optimization for GPR-MLE-s and GPR-MLE-c, see step 2 in Table 
5.1 

Two days before (192 data points) and two days after the data gap were 
used as training data. Thus, for each signal with 100 data gaps, 100 local GPR-
MLE and GPR-SMC models were obtained. Settings for GPR-SMC and prior 
distributions are given in Supplementary material S5.1. 

5.2.9 Case study 2: Detecting abnormal air flow-nitrified 
ammonium ratios 

The intention of the second case study was to study GPR on a real data set and 
to study whether GPR could be used for model based fault detection. Here, we 
used GPR to build a simple process model by describing the air requirement 
as a function of nitrification rate, a relationship that is not necessarily linear. 
Thus, the promises of GPR allow us to build a well-defined process model 
based on qualitative process knowledge and process data. Given such a model 
based on historic data, we could compare new measurement with the model´s 
predictions and detect deviations in the ammonium measurement. 

Drift in ammonium on-line sensor measurements have limited the perfor-
mance of ammonium based controllers, still, the sensors are common in full-
scale control applications (Åmand 2014). In this second case study, we moni-
tored the accuracy of an ammonium on-line sensor positioned in the pre-sedi-
mentation basin ( ), with GPR-SMC. We only used GPR-SMC since it 
had better results than GPR-MLE in case study 1. 

The GPR-SMC was used to model the ratio between air flow (output/re-
gressor) and nitrified ammonium (input/regressand) according to 

 
 ( ) = ( ( ) ( ) − ( + 5)  (5.19) 

where  was the total air applied to the activated sludge process at time  [hours]. We can see from (5.19) that  is a function of the wastewater flow 
, and the monitored influent and effluent ammonium sensors,  and 

 respectively. Thus, the regressor variable, the nitrified amount ammo-
nium, was calculated from three variables although the process model was 
univariate. 

We used delayed measurements of the effluent ammonium concentration 
to compensate for the time-delay between measured influent and effluent am-
monium concentration. We used a time-delay of five hours, since this gave the 
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highest correlation with the influent ammonium concentration. This was sim-
ilar to the average hydraulic retention time and thus a reasonable approxima-
tion of the WRRFs time dynamics. 

We used a linear mean function, ( ), and a squared exponential kernel 
combined with a white noise kernel for the covariance function, i.e. 

 
 ℳ / ( ) ~ ( ), ,  (5.20) 

 , = , + ,  (5.21) 

where  was amount of nitrified ammonium, and ℳ / ( ) was the mod-
elled air flow. The reason for the linear mean function was prior knowledge 
that an increased amount of nitrified ammonium requires an increase in sup-
plied air. However, since the relationship is not necessarily linear but at least 
suspected to be smooth, the squared exponential kernel seemed like a reason-
able choice.  

As benchmark method we used a standard linear regression model with two 
parameters  and  as the regression function ( ) 

 
 ( ) = + , (5.22) 

The parameter estimates  and  were obtained by ordinary least squares.  
Historic process data from Bromma WRRF in Sweden (approximately 

300,000 p.e.) were used in this study. The original dataset was 2 years with 
one hour sampling time, but we reduced the data set for two reasons. First, we 
were only interested in periods where we were certain that the influent ammo-
nium sensor was either faulty or correct. Second, we wanted to restrict the 
study to stable and warm periods to be able to use the simple process model 
in (5.19). 

The first data selection requirement was needed to assess the performance 
of the fault detection methods. In contrast to simulated data, it is problematic 
to know the true values in full-scale data. Here, we used weekly lab analyses 
to decide whether the influent ammonium sensor showed correct or faulty 
readings. Although lab measurements include uncertainties, this validation 
procedure is a common approach to validate most online sensors. Since the 
weekly lab samples were sampled volume proportional, we adjusted  to 
be flow proportional at the equivalent week and then compared the weekly 
averages. The 20 weeks with largest- and smallest difference in mean were 
defined as faulty and correct measurements, respectively. We discarded the 
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remaining data since we considered the correctness of influent ammonium 
sensor to be unclear. 

An extended multivariate version of (5.19) with suspended solids concen-
tration and temperature could potentially cover a broader process conditions. 
However, in this introductory study we prefer to use a simple univariate 
model. We refer the interested reader to (Ažman and Kocijan 2007) for exam-
ples of how GPR can be applied in the multivariate case and to (Dolenc et al. 
2016) for recent example of GPR applied to fault detection applications. 

The second selection requirement was selected to maintain a simple process 
model. The process model in (5.19) depends on temperature and suspended 
solids concentration, and is therefore only valid within a specific range. Here, 
we used stable inflow neglecting heavy rainfalls and snow melting periods 
( below 2.2 m3/h), summer temperatures (temperatures above 15°C), and 
normal suspend solids concentration (SS) (SS between 3200 and 3900 mg/L). 

At the end, the two selection requirements resulted in training and test data 
of about four months, compared to the original two year large data set. The 
four months data were categorized as: training data (1200 hours, non-faulty), 
non-faulty test data (1000 hours), and faulty test data (300 hours), where the 
training data came from year one and test data from the second year. 

Similarly, as it is problematic to use full-scale data to evaluate fault detec-
tion evaluation, it may also be problematic to assure that the training data 
comes without significant errors. In this case study we validated the training 
data by using the following approaches: 

  
•  was verified by lab measurements similarly as . In contrast 

to , the ammonium at the effluent was measured by an analyzer 
which showed good agreement with lab analyses. 

•  had no large changes in ratio compared to the summed flow meas-
urements of all parallel flows at the activated sludge basin. Thus, we are 
confident that no large changes occurred during the two years, although 
the true value might be biased. A constant bias would however not affect 
our suggested monitoring approach. 

•  was hard to validate, and significant errors in training data could re-
sult in either to many false alarms or a too restrictive fault detector. How-
ever, we expected  to be a stable measurement with minor risk to drift 
since the sensor measures clean air indoor and is unlikely to be affected 
be e.g. moist or fouling. Also, previous experience suggests that  
measurements are stable towards large drift within two years’ time and a 
constant bias would not affect our suggested monitoring approach. 
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We used percentage of detection , and false alarm probability  to evalu-
ate the fault detection performance of GPR-SMC and OLS 

 
 = ##    (5.23) 

 
 = ## −    (5.24) 

A fault was detected when a new observation was outside a ± 2 standard de-
viation prediction interval. A Gaussian 2 standard deviations prediction inter-
val should include 95% of new values, given that the process model still ap-
plies. We assumed that this was a good trade-off between false alarm rate and 
detection probability. However, the magnitude of the prediction interval is a 
user choice that should fit the monitoring purpose. An increase to e.g. 3 stand-
ard deviations (which is also a common choice), would give a more restrictive 
fault detector with lower probability for false alarms with the risk of missing 
true faults. 

5.2.10 Software 
We used MATLAB for all simulations and calculations. For GPR-MLE and 
GPR-SMC the GPML-package (Rasmussen and Nickisch 2010) was used 
with an add-on toolbox for GPR-SMC (Svensson. et al. 2015). We used the 
influent generator described in (Gernaey et al. 2011) to simulate the flow rate 
signals in Case study 1. Computation time on a standard laptop computer was 
used as indication of computation complexity. 

5.3 Results and Discussion 
This section presents and discusses the results for the two case studies sepa-
rately. 

5.3.1 Case study 1: Estimating missing data in a flow rate 
signal 

In this case study we evaluated whether GPR-MLE and GPR-SMC could be 
used to estimate missing data in a simulated flow rate signal. The simulated 
flow rate signal and the missing data estimation methods were described in 
the methods section. 

The lowest NRMSE was obtained by GPR-SMC, and the largest NRMSE 
was obtained by Last value in both the low- and high noise signals (Figure 
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5.1). It was interesting to note the benefit of an advanced method (GPR-SMC) 
compared to a basic method (Last Value) for estimating missing data, although 
we expected Last value to be the worst method.  

Interpolation had the shortest mean computation time of about 1 ms, disre-
garding Last value that did not involve any computations. GPR-MLE and 
GPR-SMC were on average 3 and 5 orders of magnitude slower (5s and 100s), 
respectively. The estimation of parameters (GPR-MLE) and approximating 
the predictive distribution (GPR-SMC) were the reasons for the high compu-
tation time. The computation time did not depend on the estimated gap length, 
but on the size of training data. Computation time was only used as an indica-
tion of the different methods computational complexity, and was not a com-
parison between the specific software implementations of GPR-MLE and 
GPR-SMC. 

Although GPR-SMC was the most computationally demanding method, it 
should be fast enough for an off-line batch data estimation application. For 
estimating data in the low noise signal, one should use Interpolation since it 
had comparable performance with GPR-SMC, but was both faster and easier 
to use (Figure 5.1(a)). 

   
Figure 5.1. Normalized root mean squared error (NRMSE) for estimating 100 miss-
ing data gaps during 10 years in a simulated flow rate signal. Four different gap 
lengths were evaluated with 1, 8, 16, and 24 missing data with 15 minutes sampling 
time, resulting in data gaps between 15 minutes (1 missing datum) and 6 hours (24 
missing data). a) Low noise, σ = 135 m3/h, and b) high noise σ = 3000 m3/h. GPR-
SMC-s (empty black circle) with single kernel, and combined kernel GPR-SMC-c 
(filled black circle) gave similar NRMSE and overlap in both a) and b). GPR-MLE-c 
(filled grey triangle) overlap with GPR-SMC-s and GPR-SMC-c in a) and b).   

An increase in the noise level made it more difficult for all methods to estimate 
missing data (compare Figure 5.1(a) and (b)). Interestingly, the difference in 
NRMSE between GPR-SMC and Interpolation increased for the high noise 
signal, compared to the low noise signal. Thus, GPR-SMC was less sensitive 
to the noise level compared to Interpolation. GPR-MLE and GPR-SMC esti-
mate both the signal and the measurement noise, i.e. the covariance function 

a) b) 
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in (5.11). As a result, the mean function estimated will be more accurate (given 
that the noise estimate is accurate) compared to Interpolation, which is by con-
struction noise sensitive.  

Both GPR-MLE and GPR-SMC provided consistently good noise esti-
mates that can be used as a quality check when the true measurement noise is 
known. With unknown measurement noise, the measurement noise estimate 
is an additional benefit of GPR-MLE and GPR-SMC. Tracking of the noise 
estimate could be used to detect changes in sensors measurement noise.  

GPR-SMC-s gave good estimates of both the true signal (the signal without 
measurement noise) and missing data in the high noise signal (Figure 5.2(c)). 
Likewise, the kernels for GPR-SMC-s were close to the estimated auto covar-
iance function (ACF), (Figure 5.2(d)). The ACF was estimated from the noisy 
data. Note that GPR-SMC used several kernels (Figure 5.2(b) and (d)), one 
for each particle with a specific weight according (5.16). 

In contrast to the good estimates by GPR-SMC-s, GPR-MLE-s gave poor 
estimates for missing data and the true signal (Figure 5.2(c)). The poor esti-
mates were caused by a non-informative kernel with bad parameter values ( 
(Figure 5.2(d)), which were obtained from a local minimum during parameter 
optimization. In this case study, 26% of the optimization rounds of GPR-
MLE-s (single kernel) got stuck in a local optimum, and less than 1% of the 
optimization of GPR-MLE-c (combined kernel). This was the reason why 
GPR-MLE-s also had a worse NRMSE than GPR-SMC-s (compare GPR-
MLE-s and GPR-SMC-s in Figure 5.1). Also note that GPR-MLE-c and GPR-
SMC-c have similar NRMSE and overlap in Figure 5.1. We expected a kernel 
with many parameters, such as GPR-MLE-c, to be more likely to be stuck in 
local optima, than GPR-MLE-s. But as the results indicate, for this specific 
dataset, the combined kernel suffered less than the squared exponential kernel 
from local optima.  

In summary, GPR-SMC performed better than GPR-MLE because it could 
better account for local optima, for the two different kernels. However, it is 
not clear from the results whether this was an effect of the particle sampling 
of (5.16), or due to the non-parametric approximation used in GPR-SMC. In 
addition, we did not use a Global optimization method (GO) in GPR-MLE, 
that potentially could have handled the local optima in a better way than the 
local optimization method in the GPML-toolbox. Thus, a comparison between 
GPR-SMC and GPR-MLE with a GO would be an interesting future study. 
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Figure 5.2. a, b) Low noise level and c, d) high noise level. Time series are in a and 
c) and corresponding kernels and estimated autocovariance functions in b) and d). 
Arrows in b) and d) indicate number of time lags when kernels approach zero covar-
iance. Note that GPR-SMC has equally many covariance functions as particles used 
for the approximation in (5.16). The predictions of GPR-SMC in a) and c) are the 
sum of the different covariance functions with a weighing provided by the particle 
filter. Legends time series a) and c): true signal without noise (dashed black), sim-
ulated signal with noise (solid grey), estimated signal by GPR-SMC (solid black, 
thick line for mean prediction and thin lines for 2 standard deviation prediction inter-
val), GPR-MLE (dashed grey), and mean function value of GPR-MLE-c and GPR-
SMC-c (dashed dotted black, only in a). Legends kernels and covariance func-
tions b) and d): estimated auto covariance function (Data ACF) from simulated sig-
nal (dashed dotted black), kernels GPR-SMC-s and GPR-SMC-c (solid greyscale, 
dark indicate high weight), kernel for GPR-MLE-s and GPR-MLE-c (dashed black). 

It was not beneficial to use the combined kernel given in (5.18), compared to 
the standard squared exponential kernel given in (5.8). GPR-SMC-s and GPR-
SMC-c had similar NRMSE (Figure 5.1) although the computation time was 
twice as long for the combined kernel as for the single kernel (126s for GPR-
SMC-c and 70s for GPR-SMC-s). The reason for the equal estimation perfor-
mance was that the periodic part of the combined kernel was given weights 
close to zero (see  in (5.18)). In effect, we obtained the same results for both 
the combined- and the single kernel. 

A nice feature of GPR-SMC was its ability to do the trade off in model 
complexity automatically. In general, a too flexible model would overfit, 
which did not happen in this experiment. However, one should use the sim-
plest model that serves the purpose, and in this experiment the squared expo-
nential kernel was good choice both for GPR-SMC and GPR-MLE. 

Both GPR-MLE and GPR-SMC provide an uncertainty estimate of the 
mean value predictions, which is given by the covariance in (5.6). The uncer-
tainty estimate is given as prediction interval with ± 2 standard deviations for 
GPR-SMC-s in Figure 5.2(a) and (c) by the thin solid black lines. The total 
covariance is the sum of the estimated measurement noise and the covariance 
added from the kernel (5.6). We can see that the maximum covariance of a 

a) b) 

c) d) 
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prediction is obtained if the second term in (5.6) is zero. This corresponds to 
the lag distance when the kernel goes to zero (see arrows at x-axis in Figure 
5.2(b) and (d)). Thus, the uncertainty estimate attains its maximum value when 
no information is used by adjacent points for the predictions. At the same time, 
the prediction approaches the mean function value which in this study was the 
mean value of the signal. Both effects can be seen in Figure 5.2(a)) were the 
predictions (solid black line) stretches towards the mean function value (dot-
ted dashed line Figure 5.2(a), indicated with arrow), and the covariance 
bounds increase at the missing data gap. It is important to remark that the co-
variance bound is not a measure of agreement between true (unknown) signal 
value and predicted value, but a prediction interval that we expect to contain 
the signal. 

5.3.2 Case study 2: Detecting anomalous air flow–nitrified 
ammonium ratios 

The test data included a time period with two similar trends were the first one 
was caused by a drift in ammonium on-line sensor, and the second trend was 
a true decrease in ammonium concentration (Figure 5.3). GPR-SMC success-
fully detected the drift in the ammonium on-line sensor and had few false 
alarms during the non-faulty test period. In the full test dataset, GPR-SMC 
had 74.5% detection percentage and 15.9% false alarm percentage at a ± 2 
standard deviation prediction interval. The size of the prediction interval is a 
user choice, and could be increased in order to e.g. decrease the false alarm 
percentage. 

 
Figure 5.3. Ammonium on-line sensor positioned at the pre-sedimentation basin in 
Bromma WRRF. The figure shows a part of the test data with faulty period (week 1 
to 4.5) and non-faulty period (week 4.5 to 10). Alarms by GPR-SMC are indicated 
with red triangles, ammonium sensor (solid grey), lab measurements (solid black). 
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We used the ordinary least squares solution (OLS) to the linear regression 
model in (5.22) as benchmark method, to evaluate the benefit of using Gauss-
ian process regression. Surprisingly, both the detection percentage and false 
alarm percentage were equivalent to GPR-SMCs results. The reason for this 
was that the air flow–nitrified ammonium ratio was almost linear in the range 
18–45 mg/L, which contained the majority of test data (Figure 5.4). Thus, we 
did not benefit from GPR-SMCs flexibility in this specific case study. 

 
Figure 5.4. Prediction for a) GPR-SMC-s (thick black solid line), and b) ordinary 
linear regression (OLS) (thick black solid line). Both methods used the same train-
ing data (black dots), and test data (grey triangles). Test data outside a ± 2 standard 
deviation prediction interval (thin black solid line) raised an alarm (red triangles). 
The training data were approximately linear between 15 and 45 g/s nitrified ammo-
nium. 

The magnitudes of the prediction intervals were rather constant for both OLS 
and GPR-SMC (Figure 5.4). GPR is commonly motivated by its data depend-
ent confidence bounds, more exact the prediction intervals (Rasmussen and 
Williams 2005). In this case study, they did not vary much because of two 
reasons. First, the variance due to measurement noise was much larger than 
the variance contribution from the kernel. Thus, the variance from measure-
ment noise would hide potential changes in variance from the kernel. Second, 
we did not have a change in the predicted variance since we had many data. It 
was only for predictions far from training data (below 15 g/s and above 55 
g/s) that the variance in GPR-SMC increased due to distance to data.  

In future studies, we would like to study a regression problem with more 
profound static non-linearity to see if GPR-SMC would provide better results 
than linear regression. Further, such study should also be multivariate to assess 

a) 

b) 
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GPR-SMCs performance in larger dimensions with multiple parameter distri-
butions to estimate.  

5.4 Conclusions 
This study gives new insights into the strengths and weaknesses of two vari-
ants of the machine learning method Gaussian process regression, GPR-MLE 
and GPR-SMC. The methods were applied to two WRRF monitoring prob-
lems.  

The results in the simulated missing data flow rate case showed that GPR-
SMC had better performance than the standard GPR-MLE, where GPR-MLE 
suffered from getting stuck in local minima during kernel parameter estima-
tion. The local optima were mainly a problem for GPR-MLE when the single 
kernel was used, and indicates that the standard GPR-MLE with a standard 
kernel was not satisfactory for the specific case to estimate missing data in a 
flow rate signal. In contrast, GPR-SMC had no problems with local optima 
and gave at the same time better predictions than linear interpolation. In the 
second case study with real data, GPR-SMC was as good as linear regression, 
but this was because the data in the regression problem had an almost linear 
relationship.  

It was not straightforward to include prior knowledge in the kernel, as com-
monly claimed in e.g. (Rasmussen and Williams 2005). Although an influent 
flow rate signal is clearly periodic, the combined kernel with a periodic part, 
did not give better results than the single kernel. Thus, we argue that the com-
mon claim that prior knowledge easily can be used by selecting a proper kernel 
is idealized. We believe that efficient usage of GPR in full-scale applications 
requires thorough understanding about kernels. In this study we show that a 
graph of the autocovariance with respect to time lags can be useful to interpret 
the impact of different kernels. This somewhat demystifies the kernel and sim-
plifies interpretation of the results.  

We conclude that GPR-SMC is both a general and powerful method for 
monitoring full-scale water resource recovery facilities. It did not suffer from 
local optima in either the simulated or the full-scale case study and gave good 
results with both kernels. 
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6 Machine Learning Techniques for 
Monitoring the Sludge Profile in a 
Secondary Settler Tank 

The aim of this chapter is to evaluate and compare the performance of two 
machine learning methods, Gaussian Process Regression (GPR) and Gaussian 
Mixture Models (GMM), as two possible methods for monitoring the sludge 
profile in a secondary settler tank (SST). In GPR the prediction of the response 
variable is given as a Gaussian probability density function, whereas in the 
GMM the probability density function is built as a weighted sum of Gaussian 
distributions. In both approaches, a residual is calculated and a fault detection 
criterion is implemented via a recursive decision rule. As case study, GMM 
and GPR were tested using real data from a sensor measuring the suspended 
solids concentration as a function of the SST level in a water resource recovery 
facility in Bromma, Sweden. The results suggest that GMM gives a faster re-
sponse but is also more sensitive than GPR to changes during normal condi-
tions. 

6.1 Introduction 
Increasing demands on effluent water quality and resource efficient operation 
are important driving forces for water resource recovery facilities (WRRFs). 
Process monitoring and detection of abnormal conditions are crucial tasks, 
since they help in keeping a robust and efficient performance of the plant 
(Olsson et al. 2014). Furthermore, increasing the number of sensors adds pro-
cess information but also increases the complexity for plant operators. Hence, 
the need for fault detection methods is a priority.  

The secondary settler tank (SST) is a key part of a WRRF since it provides 
two functions: clarification and thickening. In the clarification, the aim is the 
removal of suspended solids (SS) so to get a clarified effluent that meets the 
effluent SS goal. In the thickening, the aim is to get the concentration of the 
settled solids to be returned to the bioreactor. The SST uses gravity to separate 
the sludge (solid) component from the treated water (liquid). Due to the clari-
fication and thickening functions, typically a concentration profile (also called 
sludge profile) has a low value for the concentration close to the effluent, and 
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this value increases towards the bottom of the SST. There is a level where the 
solid concentration abruptly changes, which is called sludge blanket level. 
This level together with the SS concentration in the bottom or in the return 
sludge are the typical values to monitor in a SST. 

Some examples of methods applied to monitor a SST include image anal-
ysis (Grijspeerdt and Verstraete 1997) and model-based approaches (Traoré 
et al. 2006, Yoo et al. 2002) even though the prediction of the sludge concen-
tration profile is still far from satisfactory (Li and Stenstrom 2014), which 
makes it problematic to perform a good monitoring of the SST.  

Mathematical models have also been used for predicting the sludge profile, 
see for example 1D model proposed by Diehl et al. (2016) and 3D model pro-
posed by Xanthos et al. (2011) and to estimate the biomass in the activated 
sludge process (Hedegärd and Wik 2011). 

In the last two decades, the research field Machine Learning has gained 
especial attention since with Machine Learning it is possible to develop meth-
ods that can automatically detect patterns in data (i.e. learning), and then to 
use this information to predict future data (Murphy 2012). There are many 
different techniques in machine learning including decision trees, data clus-
tering, neural networks, Gaussian process regression, Gaussian mixture mod-
els, to mention a few.  

From these machine learning techniques, Gaussian process regression 
(GPR) and Gaussian mixture models (GMM) are two techniques that have 
started to gain interest in different applications. GPR is a regression method 
where a prediction of the response variable is given as a Gaussian probability 
density function. Thus, the predicted value of the response variable comes 
with a variance estimate, which is interpreted as an uncertainty measure of the 
prediction (Rasmussen and Williams 2005). It is worth to note that GPR is not 
a new concept, it was originally known as Kriging, with an origin from geo-
statistics in the 1950s (Cressie 1990). 

GPR has several properties making it useful for monitoring and fault de-
tection, such as: probabilistic prediction including an uncertainty estimate, 
flexible regression in a non-parametric fashion, and it is relatively simple to 
implement in common programming languages. GPR has been used for mon-
itoring and fault detection in different applications (Roberts et al. 2013), such 
as: maritime vessel track analysis (Smith et al. 2012), change point detection 
(Garnett et al. 2010b) and process monitoring (Serradilla et al. 2011). GPR 
has also been used in environmental applications, such as monitoring and fault 
detection in water monitoring signals (Samuelsson et al. 2017), modelling of 
an anaerobic wastewater treatment system (Ni et al. 2012), modelling nitrifi-
cation process and biomass growth (Ažman and Kocijan 2007) and control of 
a sequencing batch reactor (Kocijan and Hvala 2013). 

GMM is an alternative machine learning method to GPR for data monitor-
ing. GMM is a parametric probability model for density estimation using a 
mixture of Gaussian distributions (Bishop 2006). In this way, the GMM can 
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describe a set of data using the combination of Gaussian distributions. Appli-
cations of GMM in data monitoring can also be found in literature, for exam-
ple in sensor monitoring (Zhu et al. 2014), fault detection and diagnosis (Jiang 
et al. 2016, Yu 2012). Some other applications include data classification 
(Bouveyron 2014) image segmentation (Greggio et al. 2012), and many oth-
ers. 

The objective of this study is to compare the performance of GPR and 
GMM as tools for monitoring and fault detection of sludge profiles in a sec-
ondary settler tank. The chapter is organized as follows. First, a general intro-
duction to GPR and GMM is presented. Then, the case study is detailed, and 
a fault detection criterion based on GPR and GMM is then formulated. Next, 
results and discussions are shown, and some conclusions are drawn. 

6.2 Material and Methods 
The GMM is described in Section 6.2.1, whereas the GPR was described in 
Chapter 5 (Section 5.2.1-5.2.5). The fault detection problem is outlined in Sec-
tion 6.2.2 and the fault detection criteria for both methods are given in Section 
6.2.3.  

6.2.1 Gaussian mixture models 
Assume that a dataset with the inputs = [ 1, . . . , ] and outputs =[ 1, . . . , ] form a dataset  =  ( , ), using the same nomenclature as in Chap-
ter 5, where the  observations have been obtained independently. One way 
to model these data is by a mixture of models, where the aim is to represent 
certain subpopulations from the whole data set by means of a conditional prob-
ability density (binomial, exponential, etc.) (Južnič-Zonta et al. 2012). In the 
case of Gaussian Mixture Models (GMMs), the distribution of the observation 

 is modeled as a sum (or mixture) of several Gaussian distributions 
(Murphy 2012) 
 ( ) = , , (6.1) 

where  represents the mean and  represents the covariance matrix of the 
-distribution. Hence, (6.1) is a combination of  Gaussian distributions, 

where each of them has a mixing weight . These mixing weights must satisfy 0 ≤ ≤ 1 and ∑ = 1. The resulting function ( ) is a probability den-
sity function from observing the data  

Once the value  is specified, the GMM parameters , ,  can be in-
ferred by using the iterative Expectation-Maximization (EM) algorithm ap-
plied to Gaussian Mixtures (Murphy 2012). EM is a technique used to find 
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maximum likelihood solutions for probabilistic models containing variables 
that are not directly observed but can be inferred (Bishop 2006). EM for GMM 
is summarized in Table 6.1. 

Table 6.1. Expectation maximization for Gaussian mixture models. 

Algorithm 1   

1: Collect a dataset  with N observations 
2: Initialize , , , set = 1. 
3: while not convergence of , , , do 
4:    Expectation step: Compute 
 ( ) = ( | , )∑ ( | , ), (6.2) 

   = 1, . . . , , = 1, . . . , . (6.3) 

5:    Maximization step: Compute   
 = 1 ( ) , (6.4) 

 = , (6.5) 

 = 1 ( ) , (6.6) 

6:    ← + 1   
7: end while   
where   Σ = ( ) ,   = ∑ ( ), Ω = − . 

One way to assign a value for the number for Gaussian distributions  is to 
use the silhouette criterion (Rousseeuw 1987). This criterion calculates a sil-
houette value  which indicates how similar samples are in one cluster to sam-
ples in another cluster.  ranges from −1 (data misclassified) to +1 (data well 
clustered), whereas  close to zero means that the clusters are indistinguisha-
ble.  

6.2.2 Case study – monitoring a secondary settler in WRRF 
The present approach was evaluated using real data from a sensor installed in 
a SST at Bromma WRRF in Stockholm, Sweden. The sensor goes from the 
top to the bottom of the settler, passing through the clarification and the 
thickening zone. In this way the sensor measures the level [m] and the SS 
concentration [g/L], as shown in Figure 6.1(a). The profile obtained is called 
sludge profile. A typical sludge profile is shown in Figure 6.1(b). 
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Figure 6.1. (a) Experimental setup. (b) A typical sludge profile plotted as level ver-
sus SS concentration. 

The sensor works periodically, which means that a new sludge profile is auto-
matically measured after a certain period of time. The sludge profile can be 
affected by different factors including: changes in the return and/or excess of 
sludge flow rates, sludge scape, large variations in the influent flow and com-
position, and sensor clogging or malfunctioning. 

As part of the experiment, two additional measurements were recorded: the 
level at which the SS concentration was equal to 0.5 g/L (here referred as fluff 
level) and equal to 2.5 g/L (here referred as sludge level). We will refer to 
these levels during the subsequent sections. 

6.2.3 Fault detection criterion 
 
6.2.3.1 Decision rule 
The implementation of a FDM for a sensor signal  involves detecting any 
significant change in the dynamic of  when the sensor is subject to possible 
clogging or malfunctioning situation. A parameter  related to the dynamic of 

 is assumed to belong to one out of two conditions 
 

 : =     ( ),: =     ( ).  (6.7) 

To decide between  and , two FDMs are proposed. These methods are 
based on GPR and GMM (see the next subsections), which use the following 
recursive decision rule (Basseville 1993) 

 
 = +   + > 00 ℎ  (6.8) 

 

a) 
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where = 0 is set as the initial value, and = ln ( )/ ( )  is the log-
likelihood ratio between the probability density function ( ) and ( ), 

 indicates the profile number at which  is calculated. 
A common way to detect possible changes in  is by analyzing its residual 
, which is related to the distance between data in normal and possible faulty 

conditions. Therefore, in normal condition  is equal or close to zero. 
Otherwise, it will increase and will belong to a possible faulty condition. 
Hence, the detection of a change in the residual can be done by detecting a 
change in the mean value of the sequence , i.e. in this work, the parameter 

 referred in (6.7) corresponds to the mean value of the residual calculation of 
. 
Assume that  follows a Gaussian distribution ( , ), where  and  

are the mean and standard deviation of , respectively. The log-likelihood 
ratio test (Basseville 1993) for a change in  is expressed by  

 
 = ( − ) − ( + )2  (6.9) 

where  is the mean value in normal condition, and  is the possible change 
we want to detect.  is calculated by collecting data in a moving window. 
Equation (6.9) can be used in (6.8) to calculate  recursively. 

A fault is decided if > ℎ , where ℎ = m ( )|  is a threshold 
value which is calculated taking the maximum value of  obtained in normal 
condition for a certain predefined time , and  is a threshold factor. 

The next subsections show how to calculate the residual  for GPR and 
GMM, denoted as  and , respectively. 

6.2.3.2 Residual calculation using GPR 
Algorithm 2 in Table 6.2 was used to compute the residual value  for GPR. 

Table 6.2. Computation of GPR residuals. 

Algorithm 2   

1: Collect  profiles in normal conditions, each of them with  observations, set = 1. 
2: Select a covariance function and optimize the hyperparameters by maximizing (5.15) 
3: Obtain ( ∗|( , ), ∗) from (5.13) 
4: while monitoring a new profile ( , )  do  
5:        Compute 
 ( ) = 1 | , − ∗( , )|, (6.10) 

 where = , , . . . , , , . . . , ,  and = , , . . . , , , . . . , ,       

6:        ← + 1   
7: end while   
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Note from (6.10) that the residual is calculated using the distance between the 
data and the predictive mean ∗. Then, the more the data in the new profile 
that are outside the predictive distribution, the larger the residual . 

Regarding the covariance function, the selection depends on the case study. 
A common choice is to use a squared-exponential function. However, if a par-
ticular dynamic of the data needs to be captured, a combination of different 
covariance function should be implemented, such as constant, linear, sinusoi-
dal, etc. See studies by (Lloyd et al. 2014, Wilson 2013) for some examples 
showing the choice of covariance functions to different datasets. In this case 
study, the sum of a linear and a squared exponential function was used, that is  

 
 ( , ) = + + − − , (6.11) 

where ( , , , ) are hyperparameters. 

6.2.3.3 Residual calculation using GMM 
Algorithm 3 in Table 6.3 was used for the residual calculation  using GMM. 
 

Table 6.3. Computation of GMM residuals. 

Algorithm 3   

1: Collect  profiles in normal conditions, each of them with  observations, set = 1.  
2: Set  and compute Algorithm 1 to obtain ( , , ), where = 1, . . . , . 
3: while monitoring a new profile ( , )  do  
5:        Compute 
 ( ) = ( | , )  (6.12) 

 where = , , . . . , , , . . . , ,  and = , , . . . , , , . . . , ,       

6:        ← + 1   
7: end while   

 
Note from (6.12) that  is the inverse of the summation of the probability 
density function of the entire dataset . So that the farther the new profile data 
are from the data in normal condition, the probability density function de-
crease and the  increases. 
We decided to choose  representing the level of the sensor and  representing 
the SS concentration. 
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6.2.3.4 The training data set 
A total of = 15 sludge profiles in normal conditions were used as training 
dataset for Algorithm 2 and 3. The recursive decision rule (6.8)–(6.9) was 
implemented with a moving window of 10 profiles, with = 4  d to compute 
the threshold value ℎ , and = 1.1 as threshold factor. 

6.2.3.5 Software 
The software MATLAB was used for all the calculations and simulations. For 
the GPR implementation, the GPML-toolbox (Rasmussen and Nickisch 2010) 
was used, whereas the GMM implementation was done with the MATLAB 
function ’gmdistribution’. 

6.3 Results and Discussion 
This section shows the comparison between the GPR and GMM performances 
applied to the case study. First, the training is shown, next the detection 
perfromance is compared between GMM and GPR. Last, the findings are 
discussed and put into practical context. 

6.3.1 Training the methods 
The Figure 6.2(a)-(b) shows the sludge profiles in normal conditions used for 
training. The optimized GPR hyperparameters (6.11) were obtained to: =3.88, = −0.95, = 0.35, = 1.13. Figure 6.2(c) shows the predictive mean 
value (red line) along with ±2 ∗ (the predictive distribution of the standard 
deviation). 

For GMM, the highest silhouette value was = 0.77 with = 3, indicating 
that three was the optimal number of clusters, as shown by the three Gaussian 
distributions in Figure 6.2(d). 

Note in Figure 6.2 (a)-(b) that a typical sludge profile shows an abrupt 
change in the SS concentration from values close to zero to values larger than 1 / , and then this concentration keeps increasing as the sensor approaches 
the bottom of the SST. This change in the concentration was captured by the 
GPR and GMM. For GPR, the mean predictive decreases from top to bottom 
of the SST, passing through the data set, with the predictive standard deviation 
covering almost all the points. In the case of GMM, it classifies data before 
and after the jump as two separate Gaussian distributions. Note also that data 
for high concentration and low SST level were classified with another Gauss-
ian distribution. 
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Figure 6.2. (a) Sludge profiles used as training data set. (b) Sludge profiles in (a) 
plotted using dots. (c) Predictive distribution over the training data set, showing ∗ 
(red line) and ±2 ∗ (gray zone); (d) Contour of the GMM probability density func-
tion, with values indicated with colour scale. 

6.3.2 Monitoring the secondary settler 
Several trials were done to monitor the settler. As illustration, we show one 
trial which lasted for 23 days, where a new sludge profile was collected every 
15 minutes, giving a total of 2208 profiles. The progression of the profiles 
during time is shown in Figure 6.3(a)-(d) after 5, 10, 15 and 20 days of the 
experiment, respectively. 

Figure 6.4 shows the profile of the fluff and sludge level, and the profile of 
the residuals ( ) and the decision rule ( ) calculated via GPR and GMM 
approach. 
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Figure 6.3. Sludge profiles during the SST monitoring. (a) after 5 days, (b) after 10 
days, (c) after 15 days, (d) after 20 days. First days are coloured in dark blue, last 
days in dark red. 
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Figure 6.4. (a) Fluff level (black line) and sludge level (brown line), (b) Normalized 
residual response for GPR (blue line) and GMM (red line), (c) Normalized decision 
rule response for GPR (blue line) and GMM (red line), threshold for = 1.1 (black 
dashed line). Period A and B are shown as grey zones. 

There are two periods to highlight in Figure 6.4, marked as Period A and B. 
The sludge profiles of these periods are shown in Figure 6.5, which also in-
cludes the GRP predictive mean, and the GMM probability density function. 
Period A corresponds to variations in the residual profiles observed in days 12 − 13. The profiles of this period show that the concentrations between 1 −2 g/L are in a higher level with respect to the level in the training data set, see 
Figure 6.5(a) and (c). This gave a certain variation in the fluff level as seen in 
Figure 6.4(a). This behaviour was mainly captured by the GMM approach, 
see Figure 6.4(c). 

Period B refers to an event related to sensor clogging occurring after day 
17. This event was confirmed by an in-situ ocular inspection of the sensor and 
the presence of floating sludge at the surface level of the settler, causing sludge 
scape in the effluent. The profiles of this period are shown in Figure 6.5(b) 
and (d), where concentrations in the range of 0 − 2 g/L are far from the GMM 
probability density region and far from the GPR predictive mean. As seen in 
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Figure 6.4(c), this event was first captured by the GMM which shown a per-
sistent increasing in the decision rule. This event was also captured by the 
GPR after day 20. 

 
Figure 6.5. Group of sludge profiles for periods indicated in Figure 6.4(a). For 
GPR: (a) Period A, (b) Period B. The plots include the predictive mean of the train-
ing data set (black line). For GMM: (c) Period A, (d) Period B. The plots include the 
contours of the probability density function of the training data set. 

The sludge level profile (Figure 6.4(a)) did not show any significant change 
during Period A, however it showed a change late in Period B after day 20. 
Compared to the fluff level (level at 0.5 g/L), the sludge level (level at 2.5 g/L) 
did not fluctuate from its initial position, as it can be observed from the sludge 
profiles in Figure 6.3, where most of the level fluctuations in the sludge 
profiles were in the range of 0 − 2 g/L. 

When comparing the performances of GPR and GMM, the GMM gives a 
more fluctuate dynamics during the experiment. This can be seen in the be-
haviour of the residuals in Figure 6.4(b). 

See that when using = 1.1, GMM produces higher values than GPR dur-
ing normal conditions (i.e. false alarms), see the responses between days 13 
to 17 (Figure 6.4(c). However, this behavior will depend on the  used for 
the evaluation of the decision rule. A higher  might reduce the events of 
false alarms. To see this more in detail, the performance of GMM and GPR 
was also evaluated for different values of  using the following indicators: 
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• Delay of fault detection (Δ ): time spent by  to reach the 
threshold.  

• Time in fault detection ( ): duration when the detector correctly 
indicates a fault, i.e. time spent by  above threshold in fault 
detection condition.  

• Number of false alarms ( ).  
• Time in false alarm ( ): duration when the detector incorrectly 

indicates a fault, i.e. time spent by  above threshold in false alarm 
condition. 

The evaluation was done for Periods A, B and the rest of the experiment time. 
The results are summarized in Table 6.4. 

Table 6.4. Summary of GMM and GPR performance for different . 

  Δ [ ]/ [ ] [#]/ [ ] 
 Method Period A Period B Rest of time 

1.1  GMM 0.25/0.65 0.01/5.22 3/0.51 
 GPR -/- 4.81/0.35 0/- 
1.25  GMM 0.26/0.62 0.02/4.74 3/0.21 
 GPR -/- 4.91/0.22 0/- 
1.5  GMM 0.29/0.58 0.04/4.04 0/- 
 GPR -/- -/- 0/- 
1.75  GMM 0.41/0.40 0.06/3.66 0/- 
 GPR -/- -/- 0/- 
2.0  GMM 0.5/0.25 0.96/3.34 0/- 
 GPR -/- -/- 0/- 

 

See that the table includes the case shown in Figure 6.4 when = 1.1. As 
expected, when  increases, the time delay to detect a fault also increases, 
whereas the time the decision rule expends in faulty condition decreases. See 
also that when  increases, the time in false alarm decreases. When = 1.5 
the GMM performance is superior to GPR, i.e. it gave fault detections in both 
periods with relatively short time delay and with no false alarms. A threshold 
factor above 1.5 will also avoid false alarms but will also increase the fault 
detection time of GMM. 

6.3.3 Concluding remarks 
An important aspect in the GMM method is the definition of the amount of 
Gaussian distributions that describe the data set. In a given data set, the 
parameters involved in the GMM should be determined together with a value 
that indicates how well clustered is the data set, in our case by using the 
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silhouette criterion. This criterion should be evaluated for different number of 
clusters, in order to find the optimum data clustering. 

Regarding the GPR method, a key aspect for determining the predictive 
mean is the selection of the covariance function. In our case study, the covar-
iance function (6.11) was formed by two functions: a linear and a squared-
exponential function. A linear function was required to capture the shape of 
typical sludge profiles. The squared-exponential function can be seen as a 
smoothing function. For any other process profiles, a new definition of the 
covariance function should be made. 

Note that the data in the sludge profiles include outliers, defined as sharp 
changes between two successive data points. These outliers mean that the 
measured concentrations were far from the values shown by profiles in normal 
condition. If there are few outliers in a profile, a possible task in the fault de-
tection is to perform data correction, i.e. to replace outliers using data from 
the training data set. In this work, the correction of outliers was not part of the 
study. 

Another possible situation in data monitoring is missing data. This situation 
did not happen in our case study but it is common in other process monitoring 
applications. As discussed for the case of dealing with outliers, a missing data 
can be reconstructed by using data from the training data set. See Chapter 5 
where the case of missing data is evaluated for some GPR-based approaches. 

It is important to recall that two sensors measuring the same variable in the 
same reactor will give two non-identical data sets. It means that each sensor 
will have a unique predictive mean and standard deviation for the case of GPR, 
as well as a unique probability density function for the case of GMM. It 
follows that the present methodology has the advantage that it can be applied 
to sensors in diverse areas. 

One of the several applications of the current approach could be to use the 
decision rule of the FD algorithms as a tool for control actions. Therefore, new 
control strategies could include this variable as useful information to perform 
further tasks, for example, changing the recycle flow rate of the WRRF in 
order to keep the sludge profiles in a predefined level, or to give an early alarm 
that the SS sensor of the settler tank might need a supervision or a cleaning 
action. 
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6.4 Conclusions 
This study tested two machine learning techniques, GPR and GMM, for mon-
itoring the sludge profiles (level vs. suspended solid concentration) of a sec-
ondary settler tank in a water resource recovery facility. The main idea was to 
train these two methods by using a set of sludge profiles in normal conditions, 
and then perform the test by monitoring new sludge profiles. 

The results showed that GMM gave a fast fault detection than GPR, but 
GMM also showed to be more sensitive to false alarms. Nevertheless, it was 
possible to avoid the false alarm condition with a proper setting of the thresh-
old factor. 

Both methods have shown to be potential tools for monitoring sludge 
profiles. They could be applied for getting useful information about the 
performance of processes with repetitive profile data and to detect possible 
abnormal conditions. 
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7 Automated active fault detection in fouled 
dissolved oxygen sensors 

Biofilm formation causes bias in dissolved oxygen (DO) sensors, which ham-
per their usage for automatic control and thereby balancing energy and treat-
ment efficiency. In this chapter we analyse if a dataset that was generated with 
deliberate perturbations, can automatically be interpreted to detect bias caused 
by biofilm formation. We used a challenging set up with realistic conditions 
that are required for a full-scale application. This included automated training 
(adapting to changing normal conditions) and automated tuning (setting an 
alarm threshold) to assure that the fault detection methods (FDMs) are acces-
sible to the operators. The results showed that automatic usage of FDMs is 
difficult, especially in terms of automatic tuning of alarm thresholds when 
small training datasets only represent the normal conditions, i.e. clean sensors. 
Despite the challenging set-up, two FDMs successfully improved the detec-
tion limit to 0.5 mg DO/L bias caused by biofilm formation. We showed that 
the studied dataset could be interpreted equally well by simpler FDMs, as by 
advanced machine learning algorithms. This in turn indicates that the infor-
mation contained in the actively generated data was more vital than its inter-
pretation by advanced algorithms. 

7.1 Introduction 
In this chapter, we study how fault detection methods (FDMs) automatically 
can detect bias in dissolved oxygen (DO) sensors caused by biofilm fouling. 
We further evaluate how a limited, but from an operator perspective, realistic 
amount of quality-checked training data impacts the training and performance 
of FDMs. The dataset in (Samuelsson et al. 2018) is used, which was gener-
ated in line with the concept Active fault detection (AFD), which is so far an 
unexplored concept for wastewater applications. 

7.1.1 The importance of verifying DO-sensor readings 
Monitoring the condition of sensors and their related data quality in water re-
source recovery facilities (WRRFs) is essential, especially when used for au-
tomatic control. The DO-sensor is a key sensor to monitor for two reasons: i) 
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a bias has a direct effect on aeration energy and/or treatment efficiency, and 
ii) the usage of DO-sensors is widespread with multiple sensors in a standard 
WRRF. The workload for DO-sensor maintenance is thus expected to make 
up a large proportion of the total sensor maintenance time. 

7.1.2 Pushing state-of-the-art for monitoring DO-sensors 
In Chapter 3 we studied biofilm formation (fouling) and its effect on the two 
common measurement types of DO-sensors, namely membrane electrochem-
ical (MEC) and optical (OPT) sensors. The results showed that a bias above 
1.0 mg/L due to biofilm formation could be detected with a simple rise time 
estimation method (RT) for the OPT-sensor. We concluded that other FDMs 
than RT needs to be evaluated to detect lower bias levels and biofilm fouling 
faster, which is the purpose of this study. In this study we aim to improve the 
detection limit to 0.5 mg/L bias, which we believe is satisfactory for an early 
warning system, but still challenging in the light of previous results. 

7.1.3 Informative data from Active fault detection 
A novel part of the work in Chapter 3 was that the data from the DO-sensors 
were generated in line with the concept AFD, a concept recently reviewed by 
Puncochár and Skach (2018). The AFD is centred around designing a test sig-
nal, which is physically implemented (operationalized) to perturb the studied 
system in a controlled manner. The purpose of the test signal is to increase the 
diagnostic information content in data without interfering with normal oper-
ation. In Chapter 3, the test signal was a short impulse and implemented as 
pressurized air from the sensor’s automatic air-cleaning system. The short im-
pulse temporary increase the sensor’s ambient DO concentration and has been 
denoted an impulse response (IR). 

Similar ideas as AFD have been introduced including: system identification 
(Ljung 1999), on-line modelling (Vanrolleghem 1994), adaptive automatic 
control (Seborg et al. 1986), and reinforcement learning (Buşoniu et al. 2008). 
At the heart of these ideas lies experimental signal design to produce infor-
mation that is optimal according to some criterion, see (Fedorov 2010) for an 
overview of optimal experimental design (OED). The close relationship be-
tween OED, system identification and adaptive automatic control has been 
reviewed in (Pronzato 2008), although fault detection applications were not 
considered. 

The AFD has been used to improve classical fault detection strategies: i) 
detection of changed model parameter (Nikoukhah and Campbell 2008), ii) 
diagnosis with multiple failure models (Campbell et al. 2002), iii) and residual 
generation (Padilla and Choinière 2015). We expect that OED can be useful 
for further developing AFD since optimality criteria have been described both 
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for optimal parameter estimation that relate to i) (A-, D-, and E-optimal (Fe-
dorov 2010)) and model discrimination (T-optimal (Atkinson and Fedorov 
1975)) that relate to ii). The merits of using OED would however be limited 
to optimizing models representing normal conditions, as faulty data are infea-
sible to obtain in practice, especially during an iterative OED procedure.  

We believe that AFD can be especially suitable for WRRF applications. A 
dedicated test signal with high and controllable excitation should be able to 
produce data with large signal-to-noise ratio. Here, noise refers to the normal 
daily-, seasonal-, and influent flow-dependent variations that in general makes 
it hard to detect sensor anomalies during normal operation. Conducting auto-
mated test signals enables exact repeatability and precision, which contrasts 
with manual checks performed by operators.  

7.1.4 Automatic fault detection requires annotated training data 
FDMs valuable in practice both need to have good detection performance 
(high detection rate, low false alarm rate) and to be practically feasible. From 
an operator’s perspective, practically feasible means simple to use under ex-
isting conditions with little added workload. Automated training (adapting to 
training data) and tuning (setting the alarm threshold) are therefore desirable. 
However, an automated training/tuning procedure in turn requires timely ac-
cess to accurately annotated training data. Here, we refer to annotated data as 
data labelled either normal or faulty that represent the system’s (sensor) state. 
The degree of required annotation ranges from complete annotation (both 
faulty and normal classes annotated) to unannotated data, depending on which 
FDM that is used. So-called supervised classification methods exploit anno-
tated data from both classes in contrast to unsupervised methods that exploit 
data without annotation, see e.g. (Bishop 2006). FDMs that only use data from 
one class only (commonly from the normal mode) are called one-class classi-
fication methods (Pimentel et al. 2014). In short, the higher degree of annota-
tion in training data, the easier the fault detection task becomes since more 
information is available about the difference between a fault and the normal 
condition. 

Annotated data unfortunately are scarce in practice. The reason for lack of 
faulty annotated data is clear; faults should be rare. But even when faults are 
present, annotation is problematic: 

 
• It is difficult and time-consuming to identify the starting time of 

e.g. a sensor fault. 
• There is seldom a clear-cut transition between the normal and the 

faulty mode.  
• The definition of what is faulty is subjective and depends on the 

context. 
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Also, normal annotated data are challenging. Data considered to be normal 
during daily operations, often contain unknown flaws, which make them un-
representative for the normal state and therefore also unsuitable for FDM 
training. 

7.1.5 Challenges and our solutions 
The goal with our study is to improve the detection level to 0.5 mg/L bias on 
DO sensors for the data in (Samuelsson et al. 2018). Further, we conduct our 
study with realistic constraints that are needed to be solved in a full-scale im-
plementation, which include: 

 
• timely access to annotated training data 
• automated tuning of alarm thresholds using a realistic amount of 

annotated normal data 
• automated training to allow the FDMs to adapt to changing normal 

conditions such as worn sensor and/or seasonal variations 

We address these challenges by: 
 

• labelling data from the 24-h period after manual sensor verification 
as being normal 

• using small (24h) normal annotated data for FDM training 
• only consider automated training and tuning procedures with mini-

mal data pre-processing and end-user input decisions 

We assess how both supervised and unsupervised FDMs can be modified to 
analyse unconventional data with IRs generated with AFD. Note that only 
normal training data are considered. Further, we combine the performance 
measure receiver operating characteristics (ROC) see (Kay 1998), with a data 
transformation model in (Venkatasubramanian et al. 2003) to get insights in 
the interplay between data and FDMs. 

The majority studies considering AFD have been theoretical simulation 
studies, with few real-world applications. This study is one of few where real 
data are considered, and to our knowledge the first one with a WRRF applica-
tion. This study therefore pushes the state-of-the-art knowledge of the applica-
bility of AFD to real systems. 

We finally stress that AFD is a different approach compared to previous 
research in the field, which has so far been driven by interpreting and combin-
ing existing data, see e.g. the review by Corominas et al. (2018). 
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7.2 Materials and Methods 
This section is structured as follows. Section 7.2.1 gives an overview of the 
datasets in Chapter 3 and Section 7.2.2 describe how they were evaluated here 
in terms of training and test data. Section 7.2.3 explains introduce a data trans-
formation model that was used to assess the performance of the FDMs. The 
choice of FDMs is motivated in Section 7.2.4 and a technical description of 
the FDMs can be found in Appendix A7.1. 

7.2.1 Data 
An overview of the datasets used in this study is given in this section, but 
details can be found in Chapter 3. 

An IR is here defined as a 60 seconds long data sequence with temporary 
elevated DO-values from a DO-sensor, which has been subjected to a 20 sec-
onds long impulse of pressurized air (Figure 7.1(a)). The 60 second IR time 
frame starts jointly with the air impulse. The qualitative shape of an IR has 
been shown to be informative about the extent of biofilm fouling on the sensor 
(Figure 7.1(b)). It is the task for the FDMs to differentiate between normal, 
and fouled IRs that cause a bias. 

 

    
Figure 7.1. a) Illustration of an IR (dashed box) and the temporary increase in ambi-
ent DO concentration (black) after an air cleaning event (grey). b) Typical differ-
ences in the IR shapes between normal (black, solid line) and fouled MEC-type DO-
sensor (dashed lines), from Chapter 3. 

Two datasets produced in Chapter 3 were used in this study, one with artificial 
(grease) fouling denoted Dart, and one with real biofilm formation denoted 
Dreal. The Dart was produced by recording IRs at different locations in a con-
ventional activated sludge process (ASP) with varying degrees of manually 
applied grease film, as an imitation of biofilm formation. In total, Dart con-
tained 50 normal and 2628 fouled IRs. The Dreal was produced in a different 
WRRF than Dart where real biofilm formation on sensors is problematic. The 
Dreal contained six experimental periods, each one with a length between 10 

a) b) 
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and 62 days. Each experimental period started with a clean sensor, and the 
extent of biofilm formation increased until the sensor was manually cleaned, 
and the next experimental period begun. In both datasets, the bias at different 
levels of fouling was obtained as the difference between the measured DO 
concentration in the fouled sensor (before an IR), and the value from a (clean) 
reference DO-sensor that measures close to the fouled sensor. In Dart only DO-
sensors of MEC type were fouled, but in Dreal both MEC and OPT sensors 
were fouled and evaluated. 

7.2.2 Realistic and automated training procedure 
As mentioned in Section 7.1.4 it is essential to develop practically feasible 
FDMs, meaning that realistic constraints need to be tackled. Three such con-
straints are critical to automate the usage of FDMs: 

 
1. Timely access to annotated normal data  
2. Automatic training to adapt to changing normal conditions  
3. Automatic tuning of alarm threshold. 

Note that we distinguish between training (adapting the FDM to normal con-
ditions) and tuning (setting the alarm threshold for a desired trade-off between 
sensitivity and robustness). 

In the following five sections we motivate why the constraints in our study 
are realistic and reflect solutions available for a full-scale implementation. The 
two datasets in this study were used for different purposes with different train-
ing and evaluation procedures, which are described in Section 7.2.2.4 and Sec-
tion 7.2.2.5. Note that all FDMs were given the exact same raw data and con-
ditions for tuning, training, and evaluation. Minimal data pre-processing was 
applied, where only outliers (less than 10 IRs in total) were initially removed. 
The removed IR outliers contained partly frozen signals caused by data trans-
fer problems. 

7.2.2.1 Timely access to annotated normal training data 
We defined the 24 hours after an approved manual sensor verification as nor-
mal data and argue that within 24 hours it is reasonable to assume that no 
fouling or sensor wearing has occurred. Here, a verification consisted of man-
ual cleaning and compensation for potential bias due to drift after the last ver-
ification. Sensor verification was conducted in the beginning of each experi-
mental period in Dreal and for all normal IRs in Dart. In full-scale sensor mainte-
nance information system, date and time for manual cleaning and calibration 
are stored and provide the necessary information for sensor verification. Such 
data can automatically be transferred to a FDM as a realistic solution for 
providing the required normal annotated data. 
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The number of training IRs was limited to 12 to only use realistic (small) 
training datasets. The reason was that 24 hours of normal annotated training 
data only contain 12 IRs per sensor when the sensor supplier’s recommenda-
tion of 2 hour’s cleaning interval is applied. Too frequent air-cleaning wears 
the sensor out and would also reduce the time when the DO-sensor can be 
used for automatic control (during the 2-3 minutes of air-cleaning, the DO-
sensor is not sensing the true DO concentration).  

7.2.2.2 Automatic training to adapt to changing normal conditions  
It is important to have automatic procedures to compensate for non-station-
arity in WRRF process data (seasonal variations) and wear in sensor that may 
cause changes in its IR. In this study, and for a potential full-scale application, 
we assumed that the 12 IRs (24h) after a sensor verification were accessible 
for automatic re-training the FDMs. In practice, sensor verifications (and re-
training) are expected to occur in intervals of 2-4 weeks, which is enough to 
adapt to seasonal variations in data and wearing in sensor. 

7.2.2.3 Automatic alarm threshold tuning 
We used the off-line approach described by Gustafsson (2000) to set the alarm 
threshold for all FDMs. The approach requires the user to specify a desired 
false alarm rate, provide a normal dataset, and an acceptable range for the 
alarm threshold. Thereafter, an automated procedure is conducted where all 
alarm thresholds in the acceptable range are evaluated with respect to false 
alarm rates on the normal dataset. The alarm threshold closest to the desired 
one is chosen for the on-line application. The implicit assumption for the ap-
proach is that the normal training dataset is representative for the full proba-
bility distribution of the normal mode. This means that a training dataset with 
12 IRs is too small to use for tuning purposes. We however expect that it is a 
realistic effort for an operator to produce a larger training dataset (about 1 
week’s data) once every year with the purpose of tuning the alarm threshold. 
It is an open question whether each DO-sensor would need individual tuning, 
or if the same dataset and tuning could be used for all sensors of equal types. 

7.2.2.4 Dataset Dreal – training, tuning and performance assessment 
The Dreal was evaluated to imitate realistic and automated full-scale usage of 
the assessed FDMs. The first experimental period, Period 1, was used as off-
line normal data to tune the FDMs to a 10% false alarm rate. The 10% thresh-
old was chosen slightly higher than what is desired in a full-scale application 
where 1% - 5% is more reasonable. The purpose with a 10% alarm limit was 
to simplify the interpretation of the results, e.g. it is not possible to evaluate 
whether a FDM that have much lower false alarm rates on test data than 1%. 

For the experimental periods 2-5, the first 12 IRs in each period where used 
for training as described in Section 7.2.2.2, and the remaining IRs for evalua-
tion. False alarm rate and detection rate were used as performance measures 
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for the evaluation. Note that the 10% desired false alarm rate was the only part 
specified by the researchers, all remaining training and tuning steps were con-
ducted in an automated way without subjective interference. 

7.2.2.5 Dataset Dart – training and performance assessment 
The Dart was used to assess the performance of the FDMs with equal amount 
of training data as for Dreal (12 IRs) but without tuning the alarm threshold. 
Instead, the full range of possible alarm thresholds was evaluated for both 
false alarm and detection rates and visualized in a graph. A graph where each 
point on the curve corresponds to a false alarm probability (x-axis) and detec-
tion probability (y-axis) for a specific alarm threshold is known as receiver 
operating characteristics (ROC), see (Kay 1998). The ROC enables an assess-
ment of detection performances between FDMs with optimal alarm thresh-
olds, where only the interplay of training data and FDMs are assessed. We use 
the term optimal alarm thresholds since the value for the alarm threshold can 
differ for different training and test datasets, which is not applicable in prac-
tice. The ranges of alarm threshold for all FDMs are provided in the Supple-
mentary Materials S7.1 in Table 2. The ROC curve can be evaluated in terms 
of a scalar measure by integrating for the area underneath the ROC curve 
(AUC). Here, we considered the partial area under curve, , up to a false 
alarm ratio . The reason for only considering part of the AUC area was that 
it is only FDMs with low false alarm rate that are relevant for practical imple-
mentations. The actual evaluation was conducted by randomly selecting 12 
training IRs from the 50 normal IRs. The remaining 38 normal and 2628 faulty 
IRs where used to compute results for the ROC curve. The evaluation was 
repeated four times with different training IRs to get indications about how 
sensitive the results were based on the selection of training data. 

7.2.3 Transforming data to diagnostic information 
As described by Venkatasubramanian et al. (2003), any diagnostic decision 
making process can be described by its underlying data transformation pro-
cess, see Figure 7.2. Traditional FDMs are designed to maximize the diagnos-
tic information content from existing raw (process) data. In AFD, the infor-
mation content in raw data is increased by a priori knowledge of the system 
and diagnostic problem which is used to design an appropriate test signal. Fur-
ther, it is the subsequent combination of data transformation steps that decide 
the overall diagnostic performance of any FDM. Note that the information 
flow is in one direction from left to right in Figure 7.2 Thus, lost information 
in one early data space cannot be recovered in subsequent steps. This high-
lights why the AFD has potential since it is the first step (excitation space) in 
the data transformation process.  

In this study, we used the data transformation process as a tool to separate 
different parts of a FDM and thereby allow increased insights into why some 
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FDMs fail or not. One relevant example concerns the alarm threshold (class 
space) and the ROC curve (feature space). If good performance for a FDM is 
obtained in decision space but poor performance in class space, this indicates 
that it is the tuning of the alarm threshold that fails. The characteristics and 
separation of data spaces for all FDMs are described in Table 1 in Appendix 
A7.1. 

 

 
Figure 7.2. The difference in data transformation steps between traditional (passive) 
fault detection (PFD) and active fault detection (AFD). In AFD (solid lines), prior 
knowledge is also used to increase diagnostic information in raw process data 
(measurement space) in contrast to traditional fault detection (dashed lines). The fig-
ure has been adapted from (Venkatasubramanian et al. 2003) where the different 
data spaces are further exemplified. 

7.2.4 Fault detection methods 
In this section we motivate the choice of FDMs. A detailed description of the 
evaluated FDMs is given in Appendix A7.1.  

State-of-the-art FDMs potentially give better detection performance, at the 
risk of being more complicated compared to simple FDMs. Complicated 
FDMs are however more costly with regards to operator training (method us-
age and tuning) and on-line integration (implementation, debugging, and data 
storage). Thus, a cost effective FDM is a trade-off between complexity and 
detection performance. We therefore compared four FDMs of varying degree 
of complexity, namely: the pragmatic engineering approach (PEA), response 
time estimation (RT), principal component analysis (PCA), and Gaussian pro-
cess regression (GPR).  

The PEA was a straight-forward usage of the descriptive statistics mean 
and standard deviation. The RT have been described and evaluated in Chapter 
3 and thus serves as baseline performance for the other FDMs. The PCA is the 
most cited FDM in WRRF applications (Corominas et al. 2018) and one of 
few FDMs that has actually been implemented on-line in WRRFs, see (Wade 
et al. 2005). The mathematics of PCA are well known and have been described 
e.g. in the tutorial review by (Bro and Smilde 2014) and specifically for 
WRRF applications in (Haimi 2016). Thus, PCA is expected to be familiar to 

Measurement space Feature 
space

Decision 
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Class 
spaceExcitation space
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knowledge

AFD
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some WRRF operators and relevant as benchmarking method. The most ad-
vanced FDM in this study was GPR which is a state-of-the-art pattern recog-
nition algorithm that has been widely spread in the Machine learning commu-
nity, see (Rasmussen and Williams 2005) and its citations. The GPR has also 
been described and introduced to WRRF applications in Chapter 5. We ex-
pected GPR to be the best method since it is properties should make it ideal to 
model changes in the shape of an IR. In addition, GPR produce uncertainty 
intervals in its default from that are useful for automatically tuning alarm 
thresholds.  

We expected that the ambient DO concentration before an IR, denoted ini-
tial DO concentration, should impact the height of the IR. Therefore, we added 
the feature initial DO concentration to all FDMs and thereby creating several 
variants of the four FDMs, see Appendix A7.1 for a detailed summary. 

We were especially interested in evaluating different variants of GPR since 
it was the most advanced method that was also the least studied FDM for 
WRRF applications. For the GPR, the initial DO concentration in combination 
with the IR was used to construct a two-dimensional non-linear regression 
model for the shapes of IRs. We expected that this should be a flexible and 
successful model that could differ any changes in the IRs due to fouling from 
normal IRs. We compared two, two-dimensional GPR variants (GPR2se and 
GPR2ard, see Appendix A7.1 for details) with two, one-dimensional variants 
(GPR1seBF and GPR1seLR). The one-dimensional variants had a different detec-
tion mechanism in terms of decision variables where the likelihood ratio be-
tween training IRs and test IRs was used as decision variable. This is not the 
standard way to use GPR for FD and we were curious whether such measure 
could be better than the two-dimensional variants. We provide a detailed de-
scription of the GPR variants in Appendix A7.1. 

7.3 Results and Discussion 
The results for all FDMs on Dreal and Dart are jointly shown and discussed. We 
focus on three key topics: 

 
1. detection performances of the FDMs in terms of detecting the de-

sired 0.5 mg/L bias (Section 7.3.1, 7.3.3, 7.3.4, and 7.3.7) and 
avoiding false alarms (Section 7.3.2)  

2. complications that are related to automatic tuning and training in 
Section 7.3.2.1-7.3.2.2, 7.3.5, and 7.3.6. 

3. transferability to a full-scale applications and related aspects (Sec-
tion 7.3.8). 

The results on Dart (Figure 7.3) give an overview of the general performance 
ordering of all FDMs. The detection performances on Dreal are provided for 
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the two sensor types OPT and MEC in Figure 7.4 and Figure 7.5, respectively. 
Detailed results such as tuning and detection performances for all methods and 
datasets are given in Table 7.1. 

 

 
Figure 7.3. Receiver operating characteristics (ROC) for the FDMs applied to Dart 
with four different training datasets (iterations). The ROC consists of false alarm ra-
tio (PFA) on x-axis and detection ratio (PD) on the y-axis for different threshold val-
ues. The coin toss detector performance (CTD, grey dashed line, bottom right), gives 
the result of randomly raising an alarm; and the optimal detector (black line, bottom 
right) are provided for comparison.
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7.3.1 The best performing fault detection methods 
A bias larger than 0.5 mg/L was successfully detected in Dreal for the OPT 
sensor with a low number of false alarms with the three simplest FDMs: PEA, 
RT, and RTi (Figure 7.4). Only GPR2se gave good results (disregarding Pe-
riod 2) on the same data among the more advanced GPR and PCA methods. 
Similarly, the PEA, RT, RTi, and GPR2se also performed well on Dart (Figure 
7.3). The MEC sensor on Dreal (Figure 7.5) only obtained a bias above 0.5 
mg/L for minor parts of Period 2 and 5, and it was therefore mainly false alarm 
rates that could be evaluated. 

We believe that it is interesting that the advanced methods were not supe-
rior to the basic methods. We expected both PCA and GPR to improve the 
interpretation of the IRs compared to the basic RT that only use one point from 
the IR, whereas PCA and GPR analyse the full IR. Our initial assumption was 
that when only small training datasets are available, it should become even 
more important with advanced FDMs that can squeeze out any available in-
formation. The results here do not support our initial assumption and indicate 
that the added workload of using advanced FDMs was not motivated for this 
application. 

7.3.2 False alarm distribution on MEC sensor data 
A general challenge with FDMs is to reduce false alarms and understand their 
source. There are many potential explanations for the abundance of false 
alarms for the MEC sensor data in Figure 7.5 where the most obvious are:  

 
• influence from varying initial DO concentration during test periods 

(grey line, Figure 7.5) 
• non-representative tuning data resulting in an inappropriate alarm 

thresholds obtained during Period 1 (the tuning period).  

We focused on understanding the source of false alarms for the best perform-
ing FDMs as reported in Section 7.3.1, i.e. PEA, RT, RTi, and GPR2se. 

7.3.2.1 Impact of initial DO concentration 
Both RTi and GPR2se had fewer false alarms in Period 5 compared to Period 
4, despite a dramatic variation in the initial DO concentration (between 3 and 
6 mg/L Period 5, see Figure 7.5). This is the opposite of would be expected if 
the initial DO concentration during test periods was the reason for the false 
alarms. During day 38 in Period 4, all four FDMs gave false alarms when the 
DO concentration was abruptly increased. These results indicate that sudden 
changes in the DO concentration can produce false alarms, although it was not 
the main reason for false alarms for RTi and GPR2se. Our explanation is that 
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both RTi and GPR2se made use of the initial DO concentration as a feature 
and could therefore avoid false alarms due to varying DO concentrations. This 
explanation is strengthened by the fact that RT and PEA that did not use initial 
DO concentration as a feature (Table 1 in Appendix A7.1) and had more false 
alarms in Period 5. 

7.3.2.2 Interaction between tuning, training data and alarm threshold 
values 

To study whether the training data were representative for normal conditions, 
we compared the variation in the 12 training IRs for all experimental periods, 
Period 2-5. The training data differed in initial DO concentration (see Supple-
mentary materials S7.1, Figure 1-5), and interestingly, Period 4 with most 
false alarms had the smallest spread in initial DO concentration in its training 
dataset. 

To test the influence of spread in initial DO concentration in training data, 
on false alarm rates, we replaced three IRs in the original training data, with 
IRs with either a smaller or larger spread in initial DO concentration. The 
spread was increased in Period 4 and reduced in Period 5 and we then repeated 
the evaluation (see Supplementary Materials S7.1, Figure 6-7). If insufficient 
spread in training data was the underlying cause for the false alarm rates, an 
increase in the spread for training data would reduce the false alarm rate and 
imply that larger variations in the IRs in test data are accepted as normal. The 
opposite argumentation applies for Period 5 where we reduced the spread, 
compared to the original training data. The revaluated results showed that 
changing the spread in initial DO concentration in training data had a clear 
effect on the false alarm rates (see Figure 8 in Supplementary Materials S7.1). 
The GPR2se and RTi dramatically decreased their false alarm rates in Period 
4 (GPR2se from 29% to 8% and RTi from 41% to 1%). In period 5 the false 
alarm rates increased from 14% to 18% (GPR2se) and from 6% to 52% (RTi) 
when the spread instead was decreased. Neither PEA nor RT were affected by 
the spread in in initial DO concentrations in training data. This was reasonable 
since neither of them used the initial DO concentration explicitly in feature 
space and they should therefore not be affected by a changed spread in the 
initial DO concentration. 

We conclude that sufficient spread in initial DO concentration in training 
data was necessary to reduce false alarms for both GPR2se and RTi. We hy-
pothesize that “sufficient” should be put in relation to the ratio in variations 
between training and tuning data. 

7.3.3 The one-dimensional GPR variants 
The one-dimensional GPR variants GPR1seBF and GPR1seLR had better per-
formance than GPR2ard, but worse than all other FDMs on Dart (Figure 7.3). 
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The results showed that the marginal likelihood was not a good feature to sep-
arate normal from fouled IRs. The separation between normal and faulty dis-
tributions in feature space sets an upper limit for the performance in the next 
data spaces (decision and class space). It was therefore not surprising that none 
of the one-dimensional GPR variants gave good results on Dreal (Figure 7.4-
Figure 7.5) where also class space is included. In addition, they had non-ro-
bust performance on Dart and on the test periods similarly as the GPR2ard var-
iant. In the end, the one-dimensional GPR variants had worse performance 
than the simple RT and PEA and were therefore not considered further. 

7.3.4 Two dimensional GPR variants 
We previously noted that GPR2se had good detection performance but missed 
the faults in Period 2 (reconsider the OPT sensor data in Figure 7.4). Similarly 
as on the OPT sensor data, GPR2se had one iteration with deviating (poor) 
results on Dart. Also, GPR2ard had varying performance, although with poor 
results in general. We repeated the evaluation for GPR2se and GPR2ard 10 
times on the OPT sensor data, which showed that their performance varied 
(Supplementary Materials S7.1, Figure 9). Since it was only the FDM training 
(albeit the same training data) that differed between the 10 iterations, we con-
clude that the varying performance for both GPR2se and GPR2ard was an 
effect of the stochastic properties in the method. This was surprising since the 
particle filter variant of GPR showed robust results in Chapter 5. Note that the 
only difference between GPR2ard and GPR2se was that the ARD kernel al-
lowed separate parameter values for both dimensions in contrast to the SE 
kernel which used equal parameter values for both dimensions, see Appendix 
A7.1 for the technical description of GPR. The additional flexibility in the 
ARD kernel was clearly a drawback and decreased the GPR2’s performance 
from good (GPR2se), to worse than what would have been obtained by chance 
(compare GPR2ard with CTD in Figure 7.3). 

7.3.5 The tunability problem 
In this section we define the tunability problem as when the desired false alarm 
rate is not reached for a FDM on a given dataset, regardless of alarm threshold 
value that is used. The automatic off-line tuning procedure described in Sec-
tion 7.2.2 relied upon obtaining a user specified false alarm rate, to tune the 
FDMs. The results however showed that this was not applicable for all FDMs. 

An example of the tunability problem was for RT and RTi which were 
tuned to 2% false alarm rate in contrast to the desired 10% (compare false 
alarm rates in P1 first row in Table 7.1). The reason for RT and RTi, not to be 
tuned at 0.1 was because it was not possible to separate 10% of the normal IRs 
in the tuning dataset in Period 1 while iterating within the given range of alarm 
threshold values (i.e. the rise time limit). The tunability problem was present 
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in other FDMs as well (GPR1seBF and GP2ard) in the OPT sensor data and 
also in the MEC sensor data (RT, GPR2se, GPR2ard) if considering a ±5 per-
cent unit deviation from desired false alarm rate as acceptable. For the RT, the 
reason was a too low sampling time of 1 second which in practice round off 
all rise time values to full seconds, that in turn made it difficult to separate 
small differences in IRs. 

To conclude, it was the insufficient separation of (normal) training data in 
feature space that was the cause for the undesired tuning and not poorly chosen 
threshold values in class space. We expect the tunability problem to increase 
if lower false alarm rates such as 1% are required. Also, if 1% alarm rate is 
desired with one detected IR, the minimal number tuning dataset would be 
100 IRs (8 days). An alternative would be to assume a probability distribution, 
and estimate its parameters based on the normal data. In such scenario, the 1% 
level could be identified in the estimated distribution. From the results it seems 
like the tuning dataset also need to contain IRs spread out in the assumed nor-
mal distribution (we don’t necessary refer to a Gaussian distribution). We con-
clude that the suggested approach for tuning is inappropriate for this applica-
tion, and likely also similar applications with small tuning datasets. 

7.3.6 Inconsistent detection performance 
Disregarding the tunability problem and that not all FDMs obtained 0.1 false 
alarm rate, it is still desirable that they at least obtain similar false alarm rates 
during the test periods (Period 2-5), as during the tuning period (Period 1). 
Such behaviour indicates predictable false alarm rates based on the tuning and 
provides confidence that data transformation from measurement space to class 
space is consistent with different data. However, none of the nine FDMs pro-
duced consistent results with regards to both false alarms and detection rates 
at all test periods (Table 7.1). A subjective assessment should also be made by 
studying the location of false alarms and detection rates with respect to their 
proximity of fault- and normal periods. We would get more confident in 
FDMs producing early detections close to the fault period compared to ran-
domly spread out false alarms. Based on such subjective assessment, we can 
see that only PEA, RT and RTi in the OPT sensor data (Figure 7.4) gave rea-
sonable results and none of the FDMs gave convincing results for all test pe-
riods in the MEC sensor data (Figure 7.5). 

The inconsistent performance would be a major drawback in a full-scale 
application since it is critical that the operators gain trust in the FDM at hand 
to use it. Potentially the consistency could be improved with more representa-
tive training data as discussed in Section 7.3.2.2. The fact that all studied 
FDMs gave inconsistent performance supports the indication that the problem 
is related to training data, rather than the FDMs. 
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7.3.7 The PCA variants 
The two PCA variants were the best performing FDMs on Dart and had close 
to optimal pAUC0.1 performance (Table 7.1 and Figure 7.3), but gave poor 
results (too many false alarms) on Dreal (Figure 7.4-Figure 7.5). The reason 
for the discrepancy was unsatisfactory tuning of alarm threshold values. Here, 
the unsatisfactory tuning refers to too tight threshold value with respect to the 
non-faulty training data resulting in many false alarms in Dreal.  

The discrepancy can be understood by first reconsidering the near optimal 
performance in Dart. The key to this result was that the threshold value was 
varied to obtain all possible detection performances (combinations of false 
alarm- and detection ratios), and not fixed as in Dreal (compare the threshold 
values in Table 7.1 for PCA in Dart and Dreal). The ROC evaluation thus pro-
vides a measure of separation between normal and faulty distributions (for a 
given combination av data transformation steps). An additional indication that 
PCA produced good mode distribution separation was that neither of the PCA 
variants suffered from the tunability problem and achieved the desired false 
alarm rates (within +/- 5 percent units) in all datasets. This was however ob-
tained with the cost of also changing the threshold values between the itera-
tions in Dart (Table 7.1). Especially the first iteration had deviating threshold 
values in several orders of magnitude, compared to the other iterations. One 
IR with a different shape was present in the training data in the first iteration 
(see Supplementary Materials S7.1, Figure 10) and was assumed to be the 
reason for the deviating threshold values. In addition, the varying threshold 
values were non-intuitive with values in the range of 1e-3 to 1e-13 and far 
from the commonly used 0.95 confidence level. 

To conclude, the results in this study indicate that PCA successfully sepa-
rated the faulty and normal data distributions, although it was not possible in 
practice to use a fixed alarm threshold for different training and test datasets. 
The PCA needs to be further studied on how to tune and set alarm threshold 
values in relation to training data. 

7.3.8 Topics for DO sensor monitoring on a full scale 
Which FDM had sufficiently convincing results, and are there problems that 
need to be solved to put the FDMs in production on a full scale? 

It was clear that the automatic tuning procedure needs to be improved and 
that the false alarm rates need to be suppressed, which are key problems to 
handle in a full-scale application.  

We suggest three solutions to reduce the problems with false alarms: i) re-
quire a certain number of consecutive alarms before an alarm is raised. This 
would remove random alarms, at the cost of a delayed detection ii) two or 
more FDMs are combined in an ensemble monitoring system to increase the 
robustness towards false alarms iii) the test signal should be improved to take 
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into account that training and tuning data are produced so that a wide range of 
initial DO concentrations are include in the training data. If possible, despite 
the manufacturer’s recommendation, the size of training datasets should be 
increased. 

From the results, it is clear that achieving automatic tuning of FDMs with 
small training and tuning datasets is difficult. As mentioned in Section 7.2.2.2 
an increased focus on producing training datasets with larger spread in initial 
DO concentration could improve the training procedure, and probably also the 
tuning procedure. We therefore believe that it is more important to improve 
the test signal and the information content in the IRs, rather than developing 
better FDMs. Unfortunately, a more advanced design procedure for obtaining 
annotated training and tuning data is unrealistic for a full-scale application 
since more time and efforts are required. More research on strategies for au-
tomatic tuning with small (normal annotated) datasets is needed. 

Future studies should also compare how a human expert can interpret the 
IR’s in comparison to the best FDM. Such comparison would serve as a sanity 
check for how good detection performance that at least can be obtained from 
the data. That is, if a human expert outperforms the best FDM, there is room 
for improving the FDM. Recent research has demonstrated that algorithms can 
produce better detection performance than human experts, see e.g. (Haenssle 
et al. 2018), and it would be interesting to study whether similar results could 
be obtained for the given data in this study as well. 

The costs and benefits of using the FDMs need to be put into relation to the 
time for the cost of simply increasing the manual sensor maintenance interval. 
We expect the cost for a false alarm (in terms of too early sensor cleaning) to 
be small compared to a using a DO-sensor with 0.5 mg/L bias for aeration 
control. The cost in terms of lost confidence from the operators due to false 
alarms is however expected to be high. 

Even if the human operator can make a good visual control about the bio-
film formation on a sensor, we believe that automated FDMs still are valuable 
tools. As an example, consider a FDM that provide reliable information about 
the sensor condition (and likewise its data quality). Such information can be 
of great use to prioritize which sensor to check and maintain when time is 
scarce. Further, automated generation of data quality indices for many sensors 
can also provide quantifiable information about e.g. which lines or zones that 
are more suspect to fouling, which in turn can be used to improve a fixed 
sensor maintenance schedule. Automatic and objective storage of the condi-
tion for many sensors is time consuming and task that is better suited for au-
tomated FDMs, rather than human operators. 
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7.4 Conclusions 
Active fault detection can provide timely information about biofilm formation 
on DO sensors and it is a promising concept to improve sensor maintenance. 
Two fault detection methods, RTi and GPR2se, reached the goal to improve 
the detection limit to 0.5 mg/L bias caused by biofilm fouling. The detection 
performance was more related to how good the training data represented the 
normal variations, rather than how advanced the fault detection method was. 
Further, the study illustrated that it is difficult to conduct automatic fault de-
tection, especially to tune the alarm threshold when only small normal training 
datasets are available. More research is needed to solve how training data can 
be made representative for the normal conditions and included in the active 
fault detection framework. 

 
Appendix A7.1 – Fault detection method descriptions 

A7.1.1  The pragmatic engineering approach (PEA) 
The PEA used two basic calculation routines: the mean and standard devia-
tion, and should be intuitive to understand and straight-forward to implement. 
The PEA first normalizes the training IRs by subtracting their respective initial 
DO concentration. Then, the mean, IR , and standard deviation values, IR , at each time point are calculated to define the normal behavior of an IR. 
The final step before running the algorithm on test data, IR , is to decide 
the number of standard deviation values by tuning the threshold value β that 
defines the detection limit. The relation between these steps and the data 
spaces is given in Table 7.1. 

 
A7.1.2 Rise time estimation (RT) 
The RT computes the time for an IR to reach 63 percent of its peak value, see 
details in (Andersson and Hallgren 2015, Samuelsson et al. 2018). In this 
study, we include an additional variant (RTi) that also made use of the initial 
DO concentration, , of training and test IRs. To compensate for a potential 
effect from different initial DO concentrations, the RTi used the least squares 
linear regression of the correlation between initial DO concentration and time 
constant values for the 12 training IRs. The decision limits were then based 
on the prediction intervals from the least squares estimate according to 

 
 ( ) . = ( )   (1 + + ( ) ), (7.1) 

where the detection limits depend on the initial DO concentration of a test IR. 
The ( ) is the mean predicted rise time based on the initial DO concen-
tration of a test IR, and the  is a threshold value to be tuned. The term 
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after  is the standard error of prediction, which contain the mean squared 
error for the regression residuals , and the mean squared sum of the train-
ing initial DO concentrations . 

 
A7.1.3 Principal component analysis (PCA) 
In short, PCA extracts key linear correlations from the sample covariance ma-
trix of correlated variables. Deviations from the normal covariance structure 
are used as indication for a fault. In this study, PCA was applied to the IRs 
where each time step from an IR (1 to 60 seconds) was treated as an individual 
variable. The data were standardized to zero mean and standard deviation one. 
Two principal components were used as they contained at least 95% of the 
variation during a 10-fold cross validation based on training data from Period 
1 in Dreal. 

Two PCA variants with different Decision spaces were considered. The 
standard variant (PCAstand) used the common Hotelling’s T2 index and squared 
prediction error (SPE) as decision variables whereas the second variant (PCAc-

omb) combined T2 and SPE to one decision variable denoted  as in (Yue and 
Qin 2001). The PCAstand was implemented with threshold value with -dis-
tribution for the critical T2 limit and the robust SPE limit from (Varmuza and 
Filzmoser 2009). The threshold value for  was based on Ϝ-distribution for 
the T2 limit and -distribution for the SPE, which gave less restrictive limits 
compared to the PCAstand. The confidence level, , was used as tunable alarm 
threshold value for both PCA variants, see Table 7.1. 

 
A7.1.4 Gaussian Process Regression (GPR) 
The GPR has been detailed in e.g. (Rasmussen and Williams 2005) and rep-
resents the state-of-the-art FDM in this study and is therefore the least studied 
algorithm applied to WRRF applications and AFD data. It is hence of interest 
to understand how variants of GPR can be applied to AFD data and impact its 
performance.  

In short, GPR can be described as a non-linear regression method that per-
forms a smooth interpolation of training data. The GPR also produces a data 
dependent prediction interval were both the mean prediction and the predic-
tion interval are based on the assumption that data can be described as a Gauss-
ian process (i.e. a multivariate normal distribution). 

The GPR was modified to four variants that differed in both feature- and 
decision space (Table 7.1). The first two variants (GPR1seBF and GPR1seLR) 
only made use of the IRs as feature (one dimension), whereas the remaining 
two (GPR2se and GPR2ard) also included the initial DO concentration as a sec-
ond feature variable (two-dimensional, indicated with a lowercase 2). The dif-
ference between the latter two variants was two different kernels: the standard 
squared exponential (SE) and the Automatic Relevance Detection kernel 
(ARD). The difference is that the ARD have separate kernel parameter for 
every dimension in contrast to the SE-kernel that uses the same length- and 
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variance parameters for all dimensions. Note that since both the SE and the 
ARD have same kernel construction, the GPR1se would be identical to GPR1ard. 
The kernel is an important design choice in GPR and can be described as a 
parametrized covariance matrix, see (Bishop 2006) for an introduction to ker-
nels. 

A critical step in training GPR is to infer the kernel parameters from data. 
The most common approach relies on Maximum Likelihood estimation 
(MLE) (Rasmussen and Williams 2005). Various Bayesian approaches also 
exist that make probabilistic approximations of the kernel parameter distribu-
tions, e.g. by using particle filters. In this study we used both approaches 
where the MLE approach from (Rasmussen and Nickisch 2010) was used in 
GPR1seLR, and the particle filter implementation GPR-SMC in (Svensson. et 
al. 2015) was used in GPR2se, GPR2ard, and GPR1seBF. To allow a fair com-
parison, the MLE approach was repeated equally many times as the number 
of particles in the Bayesian approach. Also, the GPR-SMC was modified to 
add a small probability value of 1.0e-14 to zero probabilities in the in uniform 
distribution during kernel parameter sampling to avoid numerical problems. 
The settings for the GPR variants are provided in the Supplementary Materials 
S7.1, in Table 7.1. 

The difference between GPR1seLR and GPR1seBF was in the Decision space, 
which also differed from the two-dimensional variants. For the two-dimen-
sional variants, the standard GPR approach was applied which make use of 
the prediction intervals, i.e. the mean prediction, , and the standard 
deviation,  of the predictive normal distribution as decision limits (Table 
7.1). The width of the prediction interval (alarm threshold value) was tuned 
by deciding the number of standard deviations, , in the prediction interval. 
For the one-dimensional variants, it was not straight-forward how to infer the 
kernel parameters, especially since all training data had equivalent time values 
(t=1...60). Here, we assumed that training data (12 IRs) were independent re-
alizations from one underlying Gaussian process 

 
 ( , … , |ℳ) =  ( |ℳ) … ( |ℳ) (7.2) 

where ( , … , |ℳ) is the joint probability of datasets 1 to  given a GPR 
model ℳ.  

The decision variable for GPR1seBF was defined as the Bayes factor  
 

 = ( ( |ℳ∗) … ( |ℳ∗))( |ℳ∗)   (7.3) 

which is the likelihood ratio of training data with the most likely model 
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 ℳ∗ = ( |ℳ ) (7.4) 

and a test IR, . Note that a  larger than 1 indicates that training (normal) 
IRs have a better fit to the model, compared to test data and therefore indicate 
a fault. The marginal likelihoods of training data were obtained by approxi-
mating the integration of kernel parameters  

 
 ( |ℳ) = ( | , ℳ) ( |ℳ)  (7.5) 

by a weighted sum of the contribution from the particle filter 
 

 ̂ ( |ℳ) = ( ) , ℳ ( )  (7.6) 

The GPR1seLR used a similar decision criterion but where the average likeli-
hood value of training data was instead based on MLE kernel parameter val-
ues. The decision variable was then defined as the likelihood ratio, , be-
tween the average likelihood of training data and the average likelihood of test 
data given all MLE models from training data 

 
 = ( ( |ℳ ) … ( |ℳ ))( ( |ℳ ) … ( |ℳ ))   (7.7) 

For numerical reasons, logarithm values of  were evaluated rather than  
explicitly. 
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8 Monitoring diffuser fouling with grey-box 
modelling 

Fouling of fine-pore diffusers can cause substantial aeration energy wastage. 
It remains challenging to monitor the condition of the diffuser and thereby 
decide on the optimal time for labour-intensive and costly cleaning actions. In 
this chapter we show that data from basic sensors (airflow rate, pressure, dis-
solved oxygen concentration and airflow valve position) can be used to assess 
the diffuser’s condition. We propose a grey-box estimation method that use a 
sequence of valve positions, which improve the information content in the 
generated data, and, enables estimates of dynamic wet pressure (DWP), oxy-
gen transfer, respiration rate and the joint alpha fouling factor ( ). The 
method was evaluated in a water resource recovery facility over 18 months 
and successfully detected a reduced cleaning effect from a reverse flex clean-
ing action as a change in the estimated DWP. This demonstrates its usefulness 
for diffusor condition monitoring. Further research is needed to assess the ac-
curacy of the method for monitoring  and . Humid air on airflow rate sen-
sors were found to have a negative impact on the estimation procedure, which 
has not been appreciated before. Additional sensor related disturbances were 
identified that demonstrates that the method also can facilitate detection of 
sensor data quality issues. 

8.1 Introduction 
Despite technical improvements in fine-pore diffusers and advanced control 
systems, the aeration system remains the single most energy-demanding op-
erational unit in water resource recovery facilities (WRRFs). Regular cleaning 
of diffusers is a key action for preventing deteriorating energy efficiency (Gar-
rido-Baserba et al. 2017, Rosso et al. 2008). Garrido-Baserba et al. (2017) 
reported a 24% increase in energy consumption for the common ethylene-pro-
pylene diene monomer (EPDM) disc diffuser due to fouling and aging during 
the first 14 months of diffuser operation in a low rate loaded WRRF. Fouling 
progression was even quicker for high rate loadings.  

The decrease in energy efficiency has been attributed to fouling and aging 
of the diffusers (Krampe 2011, Rosso and Stenstrom 2006), which both lead 
to decreased oxygen transfer efficiency (OTE), whereas the underlying causal 
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effects may differ (Garrido-Baserba et al. 2017, Jiang et al. 2017, Rosso and 
Stenstrom 2006). Aging and chemical fouling (scaling) both cause the diffuser 
membranes to become less flexible and increase diffuser pressure resistance, 
i.e. an increase in dynamic wet pressure (DWP) (Rosso et al. 2008, Wang et 
al. 2020). Both aging and fouling change the membrane properties, for exam-
ple, by changing bubble size and distribution, which results in a decreased 
OTE (Garrido-Baserba et al. 2016, Garrido-Baserba et al. 2018, Odize et al. 
2017). 

8.1.1 Timely diffuser maintenance is essential but difficult to 
implement 

Timely countermeasures are essential to minimize energy wastage due to de-
teriorated diffuser efficiency. Fouling can be suppressed through different 
cleaning actions, such as top-hose cleaning, manual mechanical cleaning, gas 
sparging, chemical/acid cleaning and reverse flex (RF) cleaning (Jiang et al. 
2020, Odize et al. 2017, Rosso 2018). Cleaning actions are costly, resource 
demanding and can require a temporary reduction in treatment capacity. For 
example, top-hose cleaning requires a temporary shutdown of the current ac-
tivated sludge process (ASP) treatment line.  

It is difficult to accurately predict when cleaning is needed, since the foul-
ing progression depends on factors that vary between sites (Garrido-Baserba 
et al. 2017, Odize et al. 2017) . Garrido-Baserba et al. (2017) reported a state-
of-the-art prediction model for linking diffuser fouling to reduced OTE using 
quantification of deoxyribonucleic acid (DNA) on the diffusor surface. Such 
DNA analyses are, however, not viable in practice. The use of DNA analysis 
was motivated by the inconsistent prediction results produced by historically 
used predictors such as mixed liquor content (MLSS) and solids retention time 
(SRT). By contrast, monitoring changes in DWP in situ is straightforward 
(EPA 1989a, Rosso et al. 2008), but not sufficient on its own, since changes 
in DWP are only partly correlated with changes in OTE. Thus, direct moni-
toring of the OTE is also needed. 

8.1.2 Assessing diffuser fouling from off-gas measurements 
The OTE can be determined directly using off-gas measurements, as origi-
nally described by Redmon et al. (1983). Although the off-gas method pro-
vides accurate data, it has three drawbacks for diffuser fouling monitoring: 

 
• The method is reliant on dedicated measurement equipment (i.e. a 

floating hood, vacuum pump and sensors), which are costly and re-
quire maintenance. 
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• A representative hood coverage is representative for only a part of 
the monitored diffusers. The hood needs to be physically moved to 
change the monitoring position, which is labour-intense.  

• Changes in OTE obtained from off-gas measurements cannot sep-
arate effects from changes in α-value due to changed diffuser prop-
erties. The change in OTE for a used diffuser relative to the new 
diffuser is a factor  (Metcalf and Eddy 2004, Rosso 2018). Note 
that OTE is proportional to the product αF, and both α and F de-
scribe how effective oxygen in air is converted to dissolved oxygen 
(DO). 

The α-value relates oxygen transfer rate in clean water and process water 
(Rosso 2018). In general, the α-value is difficult to monitor, as it is influenced 
by several factors (Amaral et al. 2019), it is dynamically changing (Jiang et 
al. 2017) and is influenced partly in unknown ways (Rosso 2018). For this 
reason, the only established method to separate changed diffuser properties 
(F) from changes in α is to conduct clean water OTE measurements on the 
actual fouled diffuser. This approach is obviously not feasible during real-time 
operations. 

8.1.3 Estimating oxygen transfer and respiration rate from in 
situ oxygen dynamics 

An alternative and well-studied approach for assessing OTE is to estimate its 
proxy, the oxygen mass transfer function ( ). This can be done recursively 
using, for example, a Kalman filter as in (Holmberg and Olsson 1985, 
Holmberg et al. 1989, Lindberg 1997). The main challenge in using this ap-
proach is to excite the system (change the airflow rate and DO concentration) 
sufficiently to make it possible to separate the estimation of respiration rate 
( ) from . Several approaches have been used to excite the system, includ-
ing square waves (Holmberg and Olsson 1985), oscillating DO setpoints 
(Holmberg et al. 1989) and on/off aeration (Irizar et al. 2009). These ap-
proaches have been tested on a full scale, but only for a limited time (several 
days). There is a lack of long-term studies demonstrating the practicability and 
usefulness of in situ estimation of  and . 

8.1.4 The suggested staircase excitation method 
Here, we extend existing estimation methods by refining the airflow excitation 
into a series of steps that we call a ‘staircase’ to obtain information about the 
diffuser’s condition. This enables a more controlled estimation of ,  and 
DWP, which are all related to the diffuser’s condition. The suggested ap-
proach is in line with the concept of active fault detection, which has recently 
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been shown to be useful for detecting biofilm formation on DO sensors (Sam-
uelsson et al. 2019).  

8.1.5 Practicability study 
Reducing energy wastage due to fouled fine-pore diffusers remains a chal-
lenge because the existing method to decide a time point for cleaning requires 
costly and complicated off-gas measurements. Here, we propose a method for 
in situ condition monitoring of fine-pore aeration diffusers. The goal is to au-
tomatically obtain information about the condition of the diffuser during real-
time operations using only common instrumentation. The proposed method 
extracts data during an airflow rate sequence, which is automatically executed 
via the control system. The potential of the method is demonstrated with an 
18-month-long experiment, during which fouling and changes in α  and DWP 
were monitored in four aerated zones in a full-scale WRRF. 

8.2 Material and Methods 
The development, implementation and evaluation of the staircase method to 
assess the condition of diffusers is described here. 

8.2.1 Methodology 
The usefulness of the staircase method for diffuser condition monitoring was 
assessed by comparing the progression of estimates of DWP and α  at four 
positions in an ASP. Diffusers in different aeration zones were assumed to 
have different fouling rates depending on their location, diffuser age and aer-
ation mode (continuous or intermittent). At each position, the effect of twice-
weekly RF cleaning was assessed as an indication of the ability of the staircase 
method to monitor changes in diffuser conditions. The experiment was con-
ducted for 18 months to distinguish seasonal effects from long-term diffuser 
fouling.  

8.2.2 Experimental system description 
The experiment was performed in the 350,000 p.e. Bromma WRRF, located 
in Stockholm, Sweden. The WRRF operated at a medium loading rate (SRT 
6 days, MLSS 3,600 mg/L) in six parallel ASP lines, each divided into seven 
zones.  

Four positions (Line 1 and Line 2 at zone 3 and 4, denoted L1z3, L1z4, 
L2z3 and L2z4) were selected for the experiment. 
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• The Line 1 diffusers were 37 months old at the start of the experi-
ment. 

• The Line 2 diffusers were 6 months old at the start of the experi-
ment.  

• Zone 3 was the first aerated zone, and only aerated during winter 
and was expected to exhibit more fouling than zone 4. Zone 4 was 
aerated as required, depending on the load situation. 

The diffusers were made from EPDM (Jaeger, Jetflex HD340) and supplied 
air at a water depth of 4.07 m, 0.58 m above the basin bottom. The basin had 
a sloped bottom (1 m slope on each side of the bottom) with a 3.2 m flat area 
between the sloped sides. The diffusers were mounted on the flat area, with 
an active diffuser area density of 28% (zone 3) and 30% (zone 4).  

The air supply was controlled via a cascade controller with a fixed DO set-
point for each zone, with underlying slave controllers controlling the airflow 
rate. The sensors for the controller included electrochemical DO sensors (Cer-
lic O2X DUO), thermal gas flow rate sensors (Endress+Hauser, AT70), and a 
magnetic induction sensor for assessing the current valve position. The control 
actuators included a butterfly airflow valve (GEFA, K19) driven by a posi-
tioner (Siemens, Sipart PS2). The air was distributed with constant pressure 
(setpoint 0.51 bar) through a joint manifold for the entire ASP. 

8.2.3 Design of the staircase 
Airflow maintenance (airMaint), is a maintenance procedure similar to RF 
cleaning (Odize et al. 2017), during which the maximum nominal diffuser air-
flow rate is exceeded by 20% for 10 minutes. The airMaint was originally 
applied to diffusers in all zones two times per week, but was modified to a 
sequence resembling a staircase, with 10 different valve positions (each cor-
responding to a time slot) (Figure 8.1). Each of the 10 slots was used to facil-
itate the estimation of parameters used to monitor diffuser fouling. 
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Figure 8.1. A typical response of airflow rates and DO concentrations during the 10 
time slots at pre-defined valve positions as defined in the staircase method. 

Slot 7 was equivalent to the original airMaint procedure, with the difference 
that the valve position was fixed, in contrast to the original setting where a 
setpoint for the airflow rate was fixed. 

Slots 2, 4, 5, 6, 8 and slot 9 were used to simplify  estimation by fixing 
the airflow rate. Then, the  estimation was made more robust by consider-
ing the different airflow rates. Note that slots 2, 4, 5 and slot 6 are located 
before airMaint (slot 7), in contrast to slots 8 and 9, which were used to assess 

 after airMaint. 
A hysteresis was observed for airflow rate values at a given valve position, 

depending on the direction of the valve’s movement. Thus, the valve position 
in slot 1 was given a higher value than in slot 2 to ensure that the valve was 
always performing a ‘closing motion’ while entering slot 2. Similarly, the 
fixed staircase pattern enables comparison of airflow rates before and after 
maintenance for a given valve position obtained in closing motion (slot 2 and 
9). To monitor potential changes in the valve hysteresis, the lowest valve po-
sition that produced zero airflow rate (in closing motion) was manually iden-
tified and used in slot 3. Similarly, the valve position that gave an airflow rate 
just above zero (in closing motion) was used in slot 10. Any changes in the 
airflow rates in either slot 3 or 10 were used to indicate an increasing/decreas-
ing valve hysteresis. 

The main purpose of slots 3 and 10 was to estimate the respiration rate, as 
the airflow rate was (essentially) zero in these slots. 

The valve positions, at each step, were selected to cover the normal oper-
ating range and allow a sufficiently large perturbation and increase in DO. The 
sequence was repeated at a fixed time and on weekdays (Tuesdays and Thurs-
days) to minimize the impact of daily variations in the influent and . 
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8.2.4 Estimating  and respiration rate from dissolved 
oxygen dynamics 

The theoretical basis for describing DO dynamics in both continuous and dis-
crete time has been described by, for example, Lindberg (1997), and is re-
peated here for clarity. 

The DO dynamics in a completely stirred tank with volume  is given by 
 

 ( ) = ( ) ( ( ) − ( )) + ( ( ))( ∗ − ( )) − ( ) (8.1) 

where  is the DO entering the tank,  is the flow rate of the influent and 
effluent,  is the oxygen transfer function at airflow rate , ∗ is the DO 
saturation concentration, and  is the respiration rate at time . Equation (8.1) 
needs to be discretized since discrete-time measurements are to be used for 
estimating  and . The basic Euler forward discretization was used because 
of its simplicity. It also produced the same results compared with the more 
elaborate zero-order-hold (ZOH) method during an initial evaluation. By ap-
plying Euler forward discretization, (8.1) is converted to 

 
 ( + 1) − ( ) = 

= ( ) ( ( ) − ( )) + ( ( ))( ∗ − ( )) − ( ), (8.2) 

where the time-continuous derivative  ( ) has been estimated as  ( ) ( ), where  is the sampling time and  is an integer denoting dis-
crete-time samples. 

In general, the respiration rate ( ) needs to be estimated simultaneously 
with , as both quantities vary in time due to load and sludge activity. The ( ) was estimated in the beginning and in end of each step on the staircase 
(slots 3 and 10), assuming that ( ) from the (variance) weighted least-squares 
fusion of those two estimates could be approximated as a constant ̂ during 
the 30 minutes between the two estimates. 

The respiration rate was estimated by using the prediction error method 
(PEM) (Söderström and Stoica 1989) using least-squares linear regression, as-
suming the middle term (containing ) on the right side in (8.2) to be zero 
when the airflow rate is zero (slot 3 and 10). To further simplify the estimation 
of the respiration rate ̂, only DO measurements above 2.5 mg/L were consid-
ered. This avoids modelling the influence of DO on ̂, which has an effect 
mainly up to 2–3 mg/L (Loosdrecht et al. 2016). DO measurements were lim-
ited to the upper theoretical DO saturation level of 13 mg/L (at 5 °C water 
temperature). 
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The  was estimated as a constant, denoted , for each fixed airflow 
rate. One  estimate was obtained from each of slots 2 and slots 4–9, result-
ing in a total of seven  estimates. The  estimation was conducted simi-
larly to ̂, by minimizing the prediction error. Note that ̂ was estimated first, 
and later used during the subsequent  estimation. 

8.2.5 Obtaining  from  
As mentioned in Section 8.1.2, it is difficult to separate α from the fouling 
factor . Therefore, the product  was used as an indicator for diffuser foul-
ing, where  ranges from zero (fully fouled, with no air passing through the 
diffuser) to one (unfouled new diffuser). The  can be obtained from , 
since  is defined as the ratio between  at process conditions and at clean 
water conditions. That is, ≜  , where  is equal to one and is omit-
ted in the standard definition of . The  for the same conditions as  
was obtained by rearranging the standard definition of standard OTE (SOTE) 
during clean water tests and is derived in Appendix A8.1. 

8.2.6 Estimating diffuser dynamic wet pressure (DWP) 
The DWP can be obtained by measuring the differential pressure over the dif-
fuser. Here, we used only existing measurements, and no pressure measure-
ments were available after the airflow valve (as is common in WRRFs). For 
this reason, the DWP was instead estimated from the airflow rate through the 
valve based on information about the valve’s position and flow characteristics. 

The pressure drop over most commercial valves is experimentally assessed 
and indirectly available in the form of a kV table provided by the valve manu-
facturer. The kV table consists of kV values for different valve positions. The 
standard expression relating kV to airflow rate Q and differential pressure ∆ =−  over a valve during subcritical flow (Nesbitt 2007) is given as 

 
 = 514 ∆   (8.3) 

The product of air density  and absolute air temperature  was assumed to be 
constant at an estimated yearly average ( = 288° , = 1.2 kg/m3). Note that 
an increase in temperature result in a decrease in air density, which in effect 
makes their product (essentially) constant in the range 0 - 40 °C. 

The pressure  before the valve is the manifold pressure of the air distri-
bution system (both  and  are expressed as absolute pressure in (8.3)). The 
kV table for the airflow valve was obtained from the manufacturer and , the 



 185

absolute pressure after the valve, was obtained by rearranging (8.3) and solv-
ing the resulting second-order equation. The DWP due to fouling,  
was finally obtained as 

 
 = − − −  (8.4) 

where the water pressure , and the diffuser pressure resistance at the 
current airflow rate  (obtained from manufacturer) were subtracted 
from the gauge pressure, − . The ambient barometric pressure  was 
assumed to be constant at 1 bar. 

Since the kV values are given for a certain valve position, the DWP esti-
mates are sensitive to valve hysteresis. Therefore, the direction of valve mo-
tion was considered while computing two parameters,  and 

, that were used to monitor changes in DWP. 
 indicates the reduction in DWP from RF cleaning. This was 

defined as the change in DWP before and after airMaint (computed from slot 
1 and 7, both in closing motion) as 

 
 = , − ,  (8.5) 

The  was defined as the mean value of the DWP estimates in opening 
motion (slot 3–4) before airMaint 

 
 = 12 ,( ) (8.6) 

The  was a good estimate for long-term monitoring of changes in 
DWP, as it is based on the mean DWP just before an airMaint procedure, when 
the diffuser is most fouled. 
 

8.2.7 Software, implementation and data processing 
The staircase sequence was implemented in the WRRF’s control system (Sie-
mens, PCS7). Data were exported from the historical database with 1-second 
sampling time for all signals except water flow rate and temperature, which 
were exported with 1-minute sampling time. Data evaluation was performed 
off-line in MATLAB version R2020a. 
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Data from all slots were truncated by removing the first 60 seconds to re-
move effects from lowpass filters in the control system. Additionally, 60 sec-
onds were removed from slots 3 and 10 to allow the decrease in DO concen-
tration to stabilize. The different slots in each step were automatically identi-
fied by first smoothing the valve position data, and then detecting the change 
points using the MATLAB function ‘ischange’. The smoothing was per-
formed by applying the MATLAB function ‘smoothdata’ twice, using moving 
median (‘movmedian’) and linear regression (‘lowess’). 

8.3 Results and Discussion 
The results first present the estimated  and , the key parameters linked 
to diffuser condition. Next, the underlying estimated parameters used to obtain  ( ̂ and ) are analysed in detail. Finally, the method is assessed from a 
practical perspective, and its shortcomings are discussed along with suggested 
improvements and extensions for future applications. 

8.3.1 Monitoring diffuser dynamic wet pressure 
We first analyse the trends and patterns in the estimated  (Figure 8.2). 
Then, we analyse the factors that potentially caused a negative offset in 

. 
 

8.3.1.1 Insufficient RF cleaning in Line 1, zone 3 
There was a marked increase (0.15 bar) in  during 2019 in L1z3 (black 
dots, Figure 8.2). As a comparison, there was a 0.03 bar increase in DWP in 
polyurethane diffusers during their first year of operation (Odize et al. 2017). 
At the same time as the marked increase, the effect of the cleaning action was 
reduced as indicated by the decrease in   (blue dashed line, Fig-
ure 8.2). The reason for the reduced cleaning effect was that after June 2019, 
the targeted maximum airflow rate was not reached during airMaint. The max-
imum airflow rate was particularly low (<1,000 Nm3/h, compared with the 
desired 6,600 Nm3/h) between June and October 2019 due to a ‘flapping valve 
error’, which is explained in Section 8.3.4. From January 2020 onwards, the 
valve was fully open during airMaint, without producing the desired airflow 
rate. This indicates that the diffusers in L1z3 were fouled, most likely due to 
the absence of RF cleaning. A higher air pressure in the distribution system 
would have been needed to retain the cleaning effect. The increase in  
was unlikely to be caused by aging effects, as L1z4 had diffusers of the same 
age but remained able to reach the maximum airflow rate. 
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Figure 8.2.  (black dots) at all positions and the change in DWP before and 
after airMaint,  (blue dashed line). Vertical grey dashed lines indicate 
manual cleaning of the airflow rate sensors. All data are pre-processed and cleaned 
from known disturbances as detailed in Section 8.3.4. Line 1 have older diffusers 
than Line 2. 

A negative correlation was found between the airflow rate during airMaint and 
, demonstrating the importance of a sufficiently high airflow rate dur-

ing RF cleaning. This was evident for L1z3 (black dots, Figure 8.3) with the 
mentioned decrease in maximum airflow rate during airMaint. There is also a 
negative correlation for the other positions in Figure 8.3, although less evi-
dent. Note the two isolated groups of data for L2z3 (purple diamonds, Figure 
8.3), which were caused by overestimated airflow rates due to humid air (de-
scribed in Section 8.3.5) in combination with the difficulty to manually set the 
valve position to result in a desired maximum airflow rate. During one air-
Maint procedure, the airflow rate increased (slot 7, Figure 8.1), which made 
it difficult to predict the maximum air flow rate in the end of slot 7. Ideally, 
all observations in Figure 8.3 should have been aligned at the desired maxi-
mum airflow rate during airMaint on the X-axis.  
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Figure 8.3. Negative correlation between mean airflow rate during airMaint (slot 7) 
and . Data with airflow rate below 6,900 Nm3/h were used to interpolate 
L2z3. The two grey vertical lines indicate the desired airMaint of 6,600 Nm3/h 
(L1z3,L2z3) and 8,200 Nm3/h (L1z4, L2z4). 

There was also a periodic variation in  in Line 2 (noisy blue dashed 
line in Figure 8.2). This was caused by unevenly distributed (in time) cleaning 
actions. Since the RF was executed every Tuesday and Thursday, its effect 
and, similarly, the  were larger on Tuesdays, when there had been a 
longer interval since the last cleaning. For the short interval, the  
was close to zero or showed even negative values. By contrast to Line 2, there 
was no large periodic variation in  in Line 1. The  was 
instead constantly large at 0.05 bar, without the periodic decrease. The reason 
for this difference is not fully understood, but we hypothesize that the RF 
cleaning had a larger effect on older diffusers (Line 1) with more rigid EPDM, 
compared with newer and more flexible diffusers (Line 2). 

8.3.1.2 Impact from manual cleaning of the airflow rate sensors 
There was a sudden decrease in  at the end of March 2019 (vertical 
grey dashed line, Figure 8.2) in all positions. This was caused by manually 
cleaning the airflow rate sensor from dirt, resulting in an increase in airflow 
rate (1,300 Nm3/h to 1,900 Nm3/h at 20% valve opening) for L2z4, which had 
the dirtiest sensor. The other positions showed a smaller increase or decrease 
of 100–200 Nm3/h. Operational staff indicated that the airflow rate sensors 
were not routinely cleaned, and had not been cleaned for at least 10 years. The 
impact from biased airflow rates on  is evident in (8.3), which demon-
strates that accurate airflow rate measurements are essential for the suggested 
estimation approach. 
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8.3.1.3 Newer diffusers showed larger increase in dynamic wet 
pressure 

Considering only data from the cleaned airflow rate sensors, there was a larger 
trend for increasing  for Line 2 compared to L1z4 (disregarding L1z3 
due to the insufficient cleaning action) (Figure 8.2). The  was also on 
average larger in Line 1 than in Line 2. This agrees with our expectations that 
newer diffusers in Line 2 would show a clearer aging effect and increase in 
DWP, compared to Line 1. 

The results however differed from our expectations regarding the absolute 
values of . All positions showed negative  on the order of −0.05 
bar (Figure 8.2). This indicates a general bias, either in the model assumptions 
(8.3-8.4), or in a joint measurement (air temperature and air distribution pres-
sure). The offset could also have been caused by bias in the individual meas-
urements at the four positions (airflow rate and valve position), although this 
is less likely because it assumes a similar bias magnitude at all positions. Ul-
timately, we cannot identify the root cause for the offset in  since one 
faulty measurement alone could not have caused such large bias. Nevertheless, 
the DWP estimates provided useful information about the diffuser’s progres-
sive condition and lack of sufficient RF cleaning. Future studies and practical 
applications should address the accuracy of the absolute DWP value when 
new (unfouled) diffusers are installed. 

8.3.2 Monitoring changes in  
The trends for  partly differed from those for  (compare Figure 8.2 
with Figure 8.4). Notably, there was no change in  for L1z3 due to de-
creased RF cleaning as was seen for . This observation is in line with 
(Odize et al. 2017), in which an increased DWP was not linked to a decrease 
in aeration efficiency. The sudden change in airflow rate due to manual clean-
ing was not as clear in  at L2z4, as for DWP in Figure 8.2. 
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Figure 8.4. Estimated  values without disturbances for all positions. Slot 5 had a 
higher airflow rate than slot 4. Dashed lines indicate cleaning the airflow rate sensor. 

Considering only data after cleaning of the airflow rate sensors, there is a small 
trend towards increasing  at all positions apart from L1z3. This contrasts 
with our expectations, as we assumed there would be an increase in fouling 
and thus a decrease in aeration efficiency over the experimental period. Such 
decrease was observed in (Garrido-Baserba et al. 2017) and the contradicting 
results here could either be that the suggested method was incapable of as-
sessing changes in aeration efficiency, or that there the decrease in aeration 
efficiency was negligible. Furthermore, we assumed that the newer diffusers 
(Line 2) would show a larger (better)  than Line 1, which was not observed. 
The  was also above 1.0 (its theoretical maximum) for short periods. Since 
the current WRRF has a medium loading rate leading to extensive sensor foul-
ing (Samuelsson et al. 2018), we suggest that the unexpected results indicate 
model or measurement errors, rather than negligible diffusor fouling. Note that 
any error in the estimated underlying parameters ( ̂, , ) would be 
reflected in the .  

It is likely that also large variations in the α factor — due to influent com-
position variations —mask changes in , which are expected to lie in the in-
terval; α  = 0.11–0.79 (Metcalf and Eddy 2004). It is known that variations 
in  are large, and occasionally periodic. We still expected a slow trend in  
due to diffusor fouling, that would have been clear despite periodic variations 
as indicated in L2z4 (Figure 8.4). Therefore, further studies are needed to as-
sess whether changes in the fouling factor  can be distinguished from influent 
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variations with the proposed method. Such assessment would require exten-
sive measurements including off-gas measurements, respirometry measure-
ments, laboratory analyses and clean water tests of fouled diffusers. 

8.3.3 Estimating respiration rate ̂ is a critical parameter since any error in the estimate will be transferred to 
, and in turn to . At all positions, there was a tendency for a higher 

respiration rate at the end of the staircase (slot 10) compared with the initial 
estimate (slot 3), see Table 8.1. We hypothesize that this increase in respira-
tion rate was due to the intense aeration during airMaint. This hypothesis is 
supported by the observation that the difference was larger for zone 3 than for 
zone 4. Zone 3 was unaerated for long periods and thus would probably be 
more affected by sudden aeration. 

Table 8.1. Mean (±1 std) estimated respiration rates (g O2/m3,h) during slot 3 ( ̂  ) 
and slot 10 ( ̂ ) during the experimental period (January 2019—May 2020). 
 ̂  ̂  
L1z3 98 (± 66) 124 (± 37) 
L1z4 67 (± 46) 94 (± 44) 
L2z3 86 (± 25) 104 (± 32) 
L2z4 57 (± 22) 64 (± 20) ̂ is also informative about the load distribution. Table 8.1 shows that, on av-
erage, the estimated respiration rate was higher in Line 1 than in Line 2, indi-
cating an uneven load distribution. Further, the respiration rate was higher for 
zone 3 than for zone 4, which was expected due to the initial reduction in 
biodegradable substances. 

To perform a rough check on the reliability of the estimated respiration 
rates, the estimated specific respiration rates (obtained by normalizing to the 
assumed volatile suspended solids (VSS) content (75% of TSS)) were com-
pared with literature values (Figure 8.5). The estimated values were within or 
above the suggested normal range at all positions except L2z4 (Figure 8.5). It 
is unclear why the respiration rate was so low at L2z4, especially as the respi-
ration rate with the same sludge was within the normal range in the preceding 
zone, L2z3. 
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Figure 8.5. Specific respiration rates with bounds for the interval of normal (grey 
solid line) and low sludge activity (red dashed line) as indicated in (Henze et al. 
2002). The VSS content was assumed to be 0.75 of the measured TSS. 

8.3.4 Estimating  
Line 2 showed the most stable  and close to the expected values, especially 
in slot 4 and 5 (Figure 8.6(a)) when compared with other positions (see Sup-
plementary Materials S8.1 for a complete set of figures). There was a tempo-
rarily increase and periodic variation in  for the period July to October 
(empty circles, Figure 8.6(a)), which was not predicted from the theoretical 
clean water value  (grey line, Figure 8.6(a)). This sudden increase was 
seen at all positions (Supplementary Materials S8.1), indicating that it reflects 
a change in the water composition (either influent or activated sludge), rather 
than in the diffusers.  

A step increase in the theoretical  is seen in the beginning of April 
in all slots (Figure 8.6(a)). This was caused by manually cleaning the airflow 
rate sensor, which also resulted in an increase in airflow rate, as mentioned in 
Section 8.3.1. Note that in general, the predicted variations in  are 
small compared to . Also, the impact from  (and cleaning airflow 
rate sensors) have a much smaller impact on , than the variations in  
(compare the dip in  in early March, with the manual cleaning in end of 
March for L1z4 and L2z4, Figure 8.4). This supports the indication that influ-
ent variations causing variations in  may be too large, and mask the smaller 
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variations in . This difficulty that can severely limit the usage of  to rep-
resent OTE of diffusors has not been demonstrated in previous studies 
(Holmberg and Olsson 1985, Irizar et al. 2009, Lindberg 1997) because they 
only evaluated their approach for a short time (days). 

 

 

 
Figure 8.6.  for a) L2z4 in the different slots on the staircase (Figure 8.1). Note 
that slot 7 and 9 have a different Y-axis scale compared to other slots. b) L1z3 with 
slot 6. 

In addition to the variations, potentially caused by the influent, all positions 
and slots were also affected by disturbances (filled markers, Figure 8.6(a)). 
The disturbances, however, could be explained and are further analysed in the 
following sections, including: 
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• a flapping valve (black dots) 
• erroneous airflow rate (grey diamonds) 
• insufficient DO excitation (blue dots) 
• biased DO sensor measurements (red dots) 

8.3.5 Flapping valve error 
A large variation, or flapping, in both airflow rate and valve position was ob-
served for several measurements, as shown in Figure 8.7 and by the black dots 
in Figure 8.6. The root cause for this disturbance was that the airflow rate 
sensor was biased by humid air, which made the measured airflow rate ex-
ceeding its maximum value. This in turn triggered the control system to rap-
idly close the valve. Once closed, the valve was opened again, which caused 
an excessive airflow rate that was repeated until the airflow sensor was either 
dry or the staircase entered a slot with a lower airflow rate. The impact from 
humid air was concluded with a separate experiment where the flapping valve 
error disappeared when water condensate was removed from the aeration sys-
tem. 
 

 
Figure 8.7. The effect of humid air condensating on the airflow sensor. The effect of 
the flapping valve causing fast variation in airflow rate is evident. 

The phenomenon of humid air condensation in the air distribution system is a 
known problem, which is managed by manually emptying water condensate 
(ranging up to a few hundred litres per zone and week during early autumn in 
the current plant). Water and other substances impinging on a thermal airflow 
mass sensor are also known to affect the measured output. However, to our 
knowledge, it is not widely appreciated that the accuracy of an airflow rate 
sensor can be affected by the outdoor weather (the current WRRF is situated 
underground). Unexpectedly, the problem with condensing water vapour was 
seen throughout the year, and not only during autumn (slot 6 Figure 8.6). 
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The flapping valve issue was mainly seen in slot 2, probably when the air 
distribution system contained the largest condensate water volume, and in slot 
6 when the airflow rate was high and close to the maximum limit (see Supple-
mentary Materials S8.1 for plots equivalent to Figure 8.6A for all positions). 
Further, there were more flapping valve indications in zone 3 compared with 
zone 4 (Figure 1 in Supplementary Materials S8.1). We suggest that the con-
figuration of the air distribution system and the intermittent aeration of zone 
3 were the main factors contributing to this difference. The magnitude of the 
bias in the airflow rate sensor due to humid air and whether it has practical 
implications during normal operations is a subject for future studies. 

Surprisingly, the flapping valve was unsuccessful in suppressing DWP de-
spite the resulting frequent changes in airflow rate (compare the black dots 
around July in Figure 8.6(b) with  in L1z3 in Figure 8.2. This indi-
cates that the maximum airflow rate was more important than the variation for 
an effective RF cleaning. This suggestion is reinforced by the negative corre-
lation previously shown in Figure 8.3. 

8.3.6 Erroneous airflow rate 
During the period from June to October, the  in L1z3 exhibited a se-
ries of peaks followed by a dip (grey diamonds, Figure 8.6(b)). Similar events 
were seen for several slots in zones 3 and 4, Line 1 (Supplementary Materials 
S8.1). These were caused by a seemingly erroneous airflow rates that had a 
direct impact on . We identified two different reasons for the deviating 
airflow rates. 

First, the peaks in Figure 8.6(b) were caused by a confusion in the slot 
identification algorithm that was induced by the flapping valve. Due to the 
flapping valve, the variations in valve position were large, which made it dif-
ficult to identify when a new slot began. As mentioned in Section 8.2.7, data 
for the different slots were extracted based on a change detection algorithm 
that identified the different slots from valve position data. As a result, the air-
flow rates from wrong slots were used, which showed as ‘erroneous’ airflows. 

Second, the period with low or zero  in L1z3 was caused by a low 
airflow rate. In the staircases, it was clear that the airflow rate was zero at all 
valve positions, indicating either a frozen or broken airflow rate sensor or a 
closed valve with faulty position indication. The DO measurement oscillated 
between zero (or very low concentration) and normal values. This somewhat 
mysterious behaviour was explained by a play in the airflow rate sensor, which 
was solved in November by replacing the sensor, resulting in normal values 
for . 
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8.3.7 Insufficient DO excitation 
Slots 7–9 showed insufficient DO excitation (blue dots, Figure 8.6(a)). This 
was found to be caused by the intensive aeration during airMaint. The air-
Maint resulted in a DO concentration close to, or even above the maximum 
saturated value, which limited the available increase in DO concentration in 
subsequent slots. This made it difficult to estimate  accurately as the model 
(8.2) may provide a poor estimate when  ( ) ( ) is small. The other posi-
tions showed similar results, with insufficient DO excitation as in L2z4 (Sup-
plementary Materials S8.1). 

A related problem when the DO is close to its saturated value, is that the 
oxygen is transferred to the off-gas instead of to the water. This is not captured 
in (8.1) and introduces a bias in . From Figure 8.6(a), it is not clear whether 
the high DO concentration caused a sufficiently large bias to be problematic, 
as there is no clear difference between normal (empty circles) and potentially 
biased estimates (blue circles), for example, in slot 2–5. 

8.3.8 Biased DO measurements 
Occasionally, the measured DO was even above its theoretical saturated con-
centration. This result in a negative difference ∗ − ( ) in (8.1), which in 
turn produce negative  (slot 7 and 9 in Figure 8.6(a)). 

DO measurements above the theoretically saturated value (more than 1 
mg/L above) were flagged as biased measurements (red dots, Figure 8.6(a)). 
The biased measurements were mainly found in L1z4 (39% in slot 7, see Sup-
plementary materials S8.1), which indicates that the DO sensor in L1z4 pro-
duced inaccurate measurements. For comparison, the L2z4 indicated 8% bi-
ased measurements for the same slot (Figure 7(a), slot 7). The effect of the 
biased DO sensor on the estimated  values was unclear because we lack 
information about the bias type and magnitude. 

Similarly, as for the erroneous airflow rates, we note that the staircase 
method can facilitate detection of data quality issues, here in terms of a biased 
DO sensor. The biased DO sensors were not noticed in the WRRFs normal 
routines, which shows the potential for the staircase method to also indicate 
data quality issues. 

8.3.9 Improving the staircase 
The many disturbances with a negative impact on  are expected to be mit-
igated if the following improvements of the staircase are made. 

 
• The airMaint should be positioned at the beginning of the sequence 

to remove as much condensate water as possible and reduce the risk 
of a flapping valve.  
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• During airMaint, the valve should be controlled to an airflow rate 
setpoint instead of a predefined valve position. This would also 
avoid the flapping valve error during airMaint. 

• A sufficient DO excitation could be obtained if the DO was allowed 
to settle to about 4 mg/L between each aeration slot. For example, 
the second slot with zero airflow rate (slot 10) should be placed 
after the airMaint to lower the DO concentration sufficiently. 

8.3.10 Recommendations for replicating the implementation 
In a future implementation, the results would be less uncertain if the observed 
challenges in this study were considered. We recommend: 
 

• Measuring variations in temperature and humidity both before and 
after the blowers (close to the valve) to estimate the impact of con-
densate water. An even better solution would be to automatically 
remove the condensate water early in the air distribution system.  

• Verifying that the airflow rate sensors are clean and provide accu-
rate measurements, as this is not commonly part of sensor mainte-
nance procedure. 

• After calibrating and validating the DO sensors, comparing the 
measured maximum DO saturation concentration in buckets with 
clean and process water. This will be an additional validation of the 
measured accuracy at the (abnormally) high DO concentrations 
used for estimating . 

The method should be further validated by comparing estimated values with 
respirometry and off-gas measurements to assess its effectiveness for estimat-
ing , α and F. The DWP should be estimated when new diffusers are installed 
to identify the DWP off-set for clean diffusers. The accuracy in estimated 
DWP should be assess with additional pressure measurements, before and af-
ter the diffuser. 

8.3.11 Extending the method to additional applications 
The staircase method was inspired by the active fault detection concept (Pun-
cochár and Skach 2018). In line with that concept, the staircase could be used 
to obtain additional information about the process and sensors.  

Estimating respiration rate has many potential applications as exemplified 
in (Olsson 2012), and the suggested method would be applicable for in situ 
respirometry at several (all) zones and lines without the need for added instru-
mentation.  

As indicated previously, the maximum DO concentration is reached (or can 
be assumed to be reached) during airMaint. This value could be used to assess 
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the deviation in DO measurements to quantify bias direction and magnitude 
in the DO sensor. 

Finally, the large change in DO during airMaint can be considered to be a 
controlled disturbance that will impact the DO in the subsequent zones. By 
monitoring how quickly the subsequent DO controllers suppress the disturb-
ance, a measure of their disturbance-rejection ability could be obtained using 
for example the method by Petersson et al. (2002). 

8.4 Conclusions 
Diffuser condition and the reverse flex cleaning (RF) effect can be monitored 
using only existing instrumentation in combination with the proposed stair-
case method. An increase in dynamic wet pressure (DWP) due to insufficient 
RF cleaning was detected as changes in , which is suggested as an 
early warning indicator for diffuser fouling. By contrast, the estimated αF 
showed no trends of increasing diffusor fouling, but mainly variations that 
were suspected from unavoidable variations in  and the influent composi-
tion. This crucial challenge for using  for diffusor condition monitoring 
has not been emphasized before and needs to be considered in future studies. 

 
• This study exemplifies that new insights can be enabled by a simple 

process disturbance that in turn change the information content re-
flected in data.  

• The staircase method is promising as it is simple and available with 
minor costs.  

• The staircase method, and possibly grey-box modelling in general, 
can also be valuable for data quality assessment. Disturbances caus-
ing bias in airflow rates and DO sensor measurements were indi-
cated, which would have been undetected without analysing the 
data produced by the staircase method. 

Ultimately, these findings motivate further research on how modelling in com-
bination with repetitive process disturbances can provide useful information 
without needing additional instrumentation. 
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Appendix A8.1 Derivation of SOTE and  during 
clean water conditions 
The SOTE is given by 

 
 , =  (20, )  , ∗ ,  (8.7) 

In (8.7), ,  is the oxygen mass flow,  is the tank volume and , ∗ 
is the average saturated DO obtained during SOTE clean water tests. Note that  , ∗ is usually higher than the surface DO saturation in clean water, ∗, 
due to the liquid column pressure of water above the diffuser.  ∗, but not  , ∗, was available from the supplier’s clean water test data; therefore,  , ∗ was estimated by assuming that the effective saturation depth, , was 
50% of the basin depth (Metcalf and Eddy 2004);  is defined as  

“the depth of water under which the total pressure (hydrostatic + atmospheric) 
would produce a saturation concentration equal to , ∗…” (EPA 1989b). 

The subsequent conversion is straightforward:  ∗ =  , ∗ , where =( ) and  is the atmospheric pressure. By further compensating for 
temperature  with the common correction factor =1.024 (Metcalf and Eddy 
2004, Rosso 2018), the  is obtained as 

 
  ( , ) = ( ) , ( ) ,  ∗  (8.8) 

In (8.8), the ( ) was obtained by interpolating SOTE test measure-
ments at five airflow rates, which were provided by the manufacturer. 
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9 Summarizing discussion 

In this chapter I discuss general challenges and implications from the results 
in Chapter 2-8. The major part of this work concerns fault detection as such, 
and how this relates to data quality is discussed in Section 9.1. Next, the role 
of annotated data for fault detection is discussed (Section 9.2-9.5) from the 
perspectives of training, tuning (Section 9.3) and performance assessment 
(Section 9.5). The discussion also includes how data can get a higher infor-
mation content with deliberate perturbations (Section 9.4). Last, WRRF data 
characteristic challenges that needs to be tackled by successful methods (Sec-
tion 9.6) and general challenges for bringing FDMs into practice (Section 9.7) 
are discussed. 

9.1 Improved data quality and fault detection 
The long-term goal of this research project was to improve the data quality in 
WRRFs. Through the studies here, it has become progressively clearer that 
this needs to be considered in a wide context. Data quality should not be lim-
ited to the bias and variance of a sensor signal, which was the implicit original 
assumption. Instead, it also needs to consider how well described the data are, 
e.g. if data are annotated for normal or faulty time periods. 

The lack of both annotated data and automated quality assessment methods 
limited the development of FDMs. The hypothesis for this thesis was that the 
sensor data can be improved if faults can be quickly identified with FDMs, 
and subsequently corrected (Chapter 1). This hypothesis, however, contains a 
Catch-22 (Heller 1961) when the existing methods for assessment need to be 
improved, in order to develop the actual FDMs. For this reason, the basic tasks 
related to sensor maintenance (cleaning and calibration) were identified as key 
activities for improving the data quality, and in turn, the applicability of data 
driven FDMs (Chapter 2-8). 

The studies in this thesis further emphasize the need for automated data 
quality assessment. Again, this should be considered in a broad context in-
cluding accuracy, precision and annotations. This time-consuming task was 
conducted manually in this thesis and will need to be facilitated for a wide-
spread adoption.  

There was a surprising knowledge gap about data quality in practice con-
cerning the basic insights about common sensor faults. Sensor drift direction 
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in DO sensors due to fouling was studied in Chapter 3, where the effect from 
fouling differed between the two studied measurement techniques. Despite 
that such a study is straightforward to conduct, to the best of my knowledge, 
neither in research, nor in practice are such data commonly recorded. The in-
formation obtained is highly valuable for developing FDMs, but also for basic 
understanding about how this impact the treatment process. Chapter 2 showed 
that the sensor drift direction has a direct impact on how the treatment process 
is affected from the bias. However, the expected error occurrence (e.g. due to 
drift) is unknown, which was a draw-back for tuning and applying mass bal-
ance-based data reconciliation in Chapter 4. Access to such information was 
identified as a missing piece of information for FDMs to come to fruition in 
practice. 

9.2 Challenges with annotating data 
The success or failure with the experimental studies in this thesis was reliant 
on access to accurate data annotations although this was not explicitly empha-
sized in all studies. Further, the availability of data from the normal and the 
faulty mode guides how FDMs are selected, trained, tuned, and assessed. This 
was illustrated in the different studies in Chapter 3-8 and is further discussed 
in the following three sections.  

An annotated dataset was produced in Chapter 3 representing clean and 
fouled DO-sensors. Many unsuccessful (unpublished), efforts were made to 
artificially imitate biofilm formation on DO-sensors, which indicates the chal-
lenge to represent faulty modes in sensors in a realistic way. In Chapter 3, 
long-term experiments in a real process finally produced such faulty data. 
Note, however, that the value in final dataset was reliant on the accurate an-
notations and bias quantification. Without time for manual sensor cleaning, 
sensor replacement, reliable reference sensor measurements and points in time 
for known disturbances, the dataset would not have been useful for the subse-
quent study in Chapter 7.  

Also, in the other experimental studies it was the access to both normal and 
faulty data that allowed us to interpret the methods performances. The access 
to data containing known sensor faults such as the drifting ammonium sensor 
in Chapter 5 was essential to demonstrate the usefulness of the Gaussian pro-
cess regression as FDM.  

The most evident example of the need for data annotations was the abun-
dance of a priori unknown disturbances in the studies. For example, worn-out 
sensor membranes (Chapter 3), erroneous airflow rate readings (Chapter 8), a 
broken off-gas pump (Chapter 4), and the syphon effect (Chapter 4) had a 
great impact on data. If these disturbances had remained unexplained (after 
the experiments), the results would have been uncertain and difficult to inter-
pret. 
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There are technical challenges to store and retrieve desired annotated data. 
Proper storage and precise experimental notes (here regarded as data annota-
tions) have been a key actions for successful research as long as scientific 
experiments have been conducted. This is still an essential step in research. 
Databases, digital cameras and digital logbooks are tools that have simplified 
the procedures for documenting experiments. At the same time, the complex-
ity in terms of available data sources has increased, which poses new chal-
lenges for storing and retrieving annotated data. Related to data annotations in 
the experiments here, the two main time-consuming tasks were: 

 
1. Analysing the cause for anomalies in data produced by process 

changes, sensor maintenance actions, or sensor disturbances 
2. Merging different data sources into a joint dataset 

First, basic process changes conducted by operators, such as shutting down a 
pump or changing the aeration, were only partly recorded and hence difficult 
to analyse a posteriori. Such changes influence the data, partly in unknown 
ways. In the large WRRFs considered here, many different people were in-
volved in the operations and it was not always possible to obtain an explana-
tion for a historic process change. This was especially a challenge when his-
tory refers to weeks or even months back in time. Unfortunately, it was months 
after the executed experiment (or even a year) as details and data anomalies 
became clear and needed and an explanation. In Chapter 8, it was noticed that 
the airflow rate sensor had been replaced when an explanation for the deviat-
ing  estimates was searched for. In Chapter 4 the suggested syphon phe-
nomena with nitrate recirculation was only realized while finishing the man-
uscript during the final interpretation. Current data management systems have 
not been implemented to support this kind of information, which is in practice 
instead exchanged orally on a daily basis, and at the best, recorded in a log-
book or meeting notes. 

Regarding sensor maintenance, it was time-consuming to manually merge 
data about sensor maintenance that were commonly located in spreadsheets 
separately from the time series database. Data describing the adjustments dur-
ing calibration of the DO-sensors in Chapter 3 were stored locally in the sensor 
signal processing unit, and hence needed to be manually transferred to a log-
book at each calibration occasion. Such manual actions are prone to errors and 
automated procedures would be desirable. 

From a research perspective it is clearly a problem with ambiguous anno-
tations. It becomes especially difficult to distinguish effects in data from in-
fluent variations, process changes, and sensor faults to draw correct conclu-
sions. The need for formalizing such historic process operator knowledge into 
a knowledge-based system - essentially putting words on the operator’s expe-
rience and actions - has been realized since long (Olsson et al. 1989) and is 
still an active area of research (Ye et al. 2020). Today, systems are lacking 
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that automatically can (or at least facilitate manual efforts to) annotate data, 
by integrating and combining existing data sources. Such tailored IT-systems 
would improve the interpretability of existing data and be a step towards de-
veloping knowledge-based systems. I expect that such systems would be val-
uable for the practitioner as well as the researcher. 

9.3 Training and tuning FDMs with annotated data 
As mentioned in Chapter 1, the access to annotated training data is in general 
so central that machine learning algorithms originally were grouped into the 
two groups of unsupervised (no annotations) and supervised methods (with 
annotations). In general, the training procedure consists of several sequential 
data pre-treatment steps that generate features (characteristics in data), which 
have a large impact on the final classification performance. This was verified 
in Chapter 7 with the data transformation model in (Venkatasubramanian et 
al. 2003). In Chapter 7, the training (feature space) was separated from tuning 
(decision space), which illustrated that even excellent features that produce 
good normal and faulty mode separation as evaluated by receiver operating 
characteristics, can fail when automated tuning is required. The problem was 
that the training dataset (12 impulse responses) was too small to represent the 
normal variations, which resulted in poor tuning. 

The grey-box model in Chapter 8 was based on process theory, and not 
only on patterns in data, which reduced the need for training. Still, the com-
pensation of the constant off-set in dynamic wet pressure estimates can be said 
to be similar to training. If the model predictions would have been extended 
to a FDM, this bias would have been needed to compensate for, for example 
when tuning the alarm limit. The benefit with the grey-box model over com-
pletely data driven methods is that such bias can be physically interpreted and 
possibly corrected as its root cause is easier to identify. The interpretability of 
mechanistically rooted models is generally suggested as one main benefit.  

The data reconciliation in Chapter 4 was tuned in terms of specifying the 
error covariance matrix from theoretical assumptions and practical experience 
related to sampling error. This was done before accessing any training data 
and is a different approach from the data driven FDMs. The theoretical error 
assumptions had a large impact on both which gross errors that were detected 
and on which reconciled values that were obtained. This made the tuning crit-
ical and demonstrated that more research is needed about how the data recon-
ciliation should best be tuned. 

The lack of a dataset with strictly unbiased sensor measurements in Chapter 
4 can be considered as a lack of normal training data. This was a common 
challenge in all full-scale studies. As indicated in Chapter 7, small training 
data subsets obtained at the normal conditions, can limit the FDM training. 



 205

This is a general challenge to use small datasets for representing reality as was 
demonstrated in Figure 1.5. 

 With regards to tuning, I suggest that it is the tails of the underlying normal 
(fault free) distribution that are most relevant to obtain data from. These are 
obviously difficult to obtain since they are likely close to or overlaps with the 
faulty mode distribution. Thus, they will have a large impact on false alarm 
and true detection rates.  

The challenge to estimate the normal mode distribution increases when the 
process is time-varying (non-stationary), which then shifts the distribution lo-
cation. Re-training and re-tuning is then needed, which further increases the 
needed amount of training data. It can be possible to compensate for a non-
stationary behaviour if this can be modelled. A basic strategy for dealing with 
non-stationary nature of the WRRF is to correct for temperature changes in 
the influent (which is one of the main causes for the time-varying behaviour). 
This was used in both Chapter 4 and Chapter 8. The results in Chapter 4 indi-
cated that the general temperature correction (Henze et al. 2002) needs to be 
adapted for current WRRF conditions. In Chapter 5, only dry weather was 
considered, which is one option to deal with non-stationarity. This has the ob-
vious draw-back that only part of the plant’s condition can be monitored un-
less multiple models are used with different tuning of a FDM. In theory this is 
feasible, but would require extensive model training and validation, in combi-
nation with detection of when the different models are applicable. Such ap-
proach is similar to gain-scheduling in PID controllers and has been suggested 
for FDMs based on principal component analysis and partial least squares 
models (Haimi 2016, Rosén 2001). 

Although there are challenges to obtain sufficient and representative nor-
mal training data, it can sometimes be straightforward, for example, for sensor 
fault detection. In Chapter 7, normal data were defined as the 24-hour period 
after manual sensor cleaning, inspection and validation. It further simplifies 
that many identical sensors are used in either parallel treatment lines or at dif-
ferent zones. In Chapter 3, up to 30 identical DO sensors were used in the 
current WRRF. If data from such 24-hour normal periods would be combined, 
we expect that the ambiguities possibly related to seasonal trends or sensor 
wear would be possible to quantify. Even better would be to share such normal 
data openly between different WRRFs to further gain experience in the spread 
of the normal sensor behaviour. 

All methods considered in this thesis were only trained on data from the 
normal mode. Such (supervised) one-class classification methods require an 
explicit definition of what is normal. The task to make this, often subjective 
definition explicit, has a positive side effect that it forces the researcher or 
process operator to critically assess what deviation, e.g. bias magnitude, that 
can be allowed. Any ambiguity and subjective discrepancies will then be 
brought out into the open for discussion. An additional benefit with only train-
ing and tuning on the normal mode is that any deviation, regardless of type of 
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fault, can be detected. If instead a binary supervised classification method is 
applied, the training and tuning will target a certain fault, which can make the 
method insensitive for other faults. A challenge with one-class classification 
is the tuning and to set an alarm threshold. Probabilistic FDMs were used in 
Chapter 5-7, which provide a natural tuning, while still only trained on normal 
data. Setting the alarm limit, for example, for observations outside a two or 
three standard deviations limit under a Gaussian assumption is in line with 
traditional Statistical process control methods (Kourti and MacGregor 1995, 
Shewhart 1930) and was used in Chapter 5-7. 

The major draw-back of only having access to training data from the nor-
mal mode is that it becomes difficult to know which features that are the most 
sensitive for the faulty mode. All data transformation steps suffer from this. It 
is clearly easier to detect a certain anomaly if its characteristics are known. 
The masking influent and process variations makes this even more important. 
The reason for not considering faulty training data, and supervised methods in 
the training and tuning, is that data from the faulty mode are even more chal-
lenging to obtain than from the normal mode (Pimentel et al. 2014). Different 
sensor faults and disturbances have, however, been frequent in the studies in 
Chapter 3, and chapters 4-8. The challenge with these faulty data is that their 
start time is unknown and not annotated. Therefore, it can still be problematic 
to obtain enough faulty training data of sensor faults. On the other hand, su-
pervised (two-class) classification methods could become feasible and facili-
tate sensor fault detection, if sensor faults could be better understood by col-
lection of datasets containing such sensor faults.  

9.4 Deliberate perturbations to increase information in 
data 

Chapter 3, and chapters 7-8 studied how deliberate system perturbations could 
produce data that are more informative about when the sensor or process 
changes from normal to faulty state. In Chapter 3 and 7, these more informa-
tive data were obtained from the sensor membrane dynamics and related 
change in its response time. In Chapter 8, the information content was instead 
improved by fixing the system at various constant levels (valve positions). 
Then, the desired model parameters were estimated from the DO which was 
excited using steps in the airflow rate. These studies confirm that deliberate 
excitations in the excitation space impact the measurement space and facilitate 
the subsequent data transformation steps. This has been well studied for model 
identification (Ljung 1999) and also fault detection and diagnosis (Puncochár 
and Skach 2018). 

One key challenge in fault detection in WRRFs is solved when process 
variations can be separated from sensor errors. Methods such as active fault 
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detection that increase the signal to process noise relation is clearly one way 
to approach this challenge. In addition, the impulse response (Chapter 3,7) and 
staircase (Chapter 8) generates patterns with new patterns (features) that dif-
fers from the conventional time-series. How these patterns can be analysed 
with machine learning such as Gaussian process regression was explored in 
Chapter 7. The results favoured the simple rise time method over the more 
advanced Gaussian process regression, but the intense research activities in 
artificial intelligence is expected to improve the knowledge in pattern recog-
nition (Ye et al. 2020), which is suited for interpreting data that are produced 
by repeated and identical disturbances.  

The findings in Chapter 3 further showed that different patterns matched 
different fault types. It was possible to visualize sensor wear in terms of pro-
gressive changes in data patterns, and not only from a visual sensor inspection. 
This approach contrasts with how time series have historically been used for 
example to train and use data driven methods such as principal component 
analysis and partial least squares for process monitoring in WRRFs (Haimi 
2016), but is instead in-line with a conventional classification workflow. Thus, 
deliberate disturbances for definite (short) time periods are promising for su-
pervised classification methods, especially if fault patterns can be produced. 

9.5 Performance assessment with annotated data 
Access to annotated data is essential for FDM performance evaluation, and 
even more important than for the training and tuning procedures. Performance 
assessment becomes difficult if it is not possible to interpret whether an alarm 
is true or false.  

Performance metrics derived from the confusion matrix (Chapter 1, Figure 
1.6) are central, including receiver operator characteristics and precision-re-
call. It should be noted, however, that the relevance of these measures is reliant 
on how well the data represent the underlying probability distributions, and 
especially the tails of the distributions. In fact, I suggest that from a perfor-
mance assessment perspective, the best data are those that lie in the borderline 
between normal and the faulty mode. These will be the most difficult for the 
method to separate and will effectively reveal its performance. This can be 
realized from Figure 1.5 where the overlapping region between the two dis-
tributions have a major influence on the alarm threshold, and thereby also the 
performance. A good estimate of this part of the probability distributions will 
reveal the performance at low false alarm rates, which is essential. 

A basic benchmark FDM can be used to indicate whether the data used for 
performance assessment pose a too simple problem for evaluating the methods 
at hand. A simple method that produce similar performance as advanced ones 
indicates that: either the detection problem is simple, or the data representing 
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the problem are easy to classify. When the true detection problem can suffi-
ciently well be solved with a basic method, there is no need for more advanced 
methods. A basic benchmark method that is simple to understand and interpret 
can therefore serve as a sanity check that indicates what is gained from more 
advanced methods. For example, the following examples are given in this the-
sis: process indicators derived from primary data, in comparison to data rec-
onciliation (Chapter 4); least squares linear regression compared to Gaussian 
process regression (Chapter 5); the pragmatic engineering approach compared 
to machine learning methods (Chapter 7). These performed well in compari-
son to the more advanced methods, which supports the benefit of always in-
cluding such benchmarks during performance assessment. 

There is commonly an imbalance in available observations for the two 
modes (normal and faulty). This is simply because the normal mode is more 
common and therefore produce more data (Pimentel et al. 2014). This is un-
desired for performance measures that implicitly assume that the data are es-
timated from the underlying probability distribution (Bishop 2006). This re-
quirement was opposed in Chapter 7, where only part of the data was consid-
ered for computing the partial area under curve. The reasoning was that FDMs 
that produce false alarm rates above a certain limit, here 10 percent was cho-
sen, will not be considered in practice. In effect, only the 10 percent in the tail 
of the normal data were used for performance assessment. This reasoning fa-
vours performance assessment on data that are representative for the border 
line between the two modes, rather than obtaining a balanced dataset in terms 
of number observations. 

The available data and related degree of annotations decide which perfor-
mance measures that are applicable. Time-based measures such as mean time 
to detection were not considered in the studies here because it requires 
knowledge of the start time for the fault. Such detailed information is feasible 
in simulations, but less feasible in practice. The simulation study in Chapter 2 
showed that small changes in nitrogen removal, down to a few percent, easily 
can be identified and analysed in a simulation. This would not have been pos-
sible to identify in practice. Practical experiments are however needed to, for 
example, assess drift direction as in Chapter 3. In the end, a thorough perfor-
mance assessment of FDMs should therefore include both simulation studies 
and practical experiments, to assess both theoretically and practically relevant 
aspects. 

The reliability and generalization of FDM performance assessment is 
tightly linked to scientific rigour of the data producing experiments. The in-
ternal validity relates to clear and accurate annotations of faulty and normal 
data, and further that sensor validation procedures in practice are reliable. 
From a scientific methodology perspective, only the study in Chapter 3 can be 
regarded as a controlled experiment. The main problem for conducting exper-
iments in WRRFs is to control all background variables, and limit interven-
tions to only deliberate ones. In fact, in all studies there were undeliberate 
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disturbances or faults that were analysed a posteriori as part of the perfor-
mance assessment. These disturbances were partly useful and partly time-con-
suming to assess. This occasional lack of internal validity suggest that the 
studies here should instead be regarded as natural observational studies. To 
compensate for this flaw, long-term studies are needed that replicate potential 
seasonal variations, which then can be distinguished from other variations.  

As mentioned, it was a great challenge to produce annotated data (both nor-
mal and faulty) for performance assessment. This will be even more difficult 
in practice when time is scarce and the main goal is process operations rather 
than detailed performance evaluation of FDMs. For this reason, we expect that 
only the raised alarms will be feasible for performance assessment in practice. 
That is, the operators will not prioritize investigating whether normal indica-
tions (no alarms) are missed detections or not. Instead, I expect that they will 
base their decision about the method’s usefulness on its ability to detect true 
faults, and amount of false alarms. Otherwise, every time instant would be 
needed to be assessed for its (normal or faulty) condition. Note that when only 
data from alarms are considered, the statistics based on the confusion matrix 
(Figure 1.6) become infeasible. For example, the false alarm rate cannot be 
obtained since this would require information about how many of the obser-
vations that did not cause an alarm and belong to the normal mode. Also, as-
sessment of the true detection rate requires abundance of faults to be evalu-
ated, which is undesired and therefore scarce in practice. 

Instead, the tuning method proposed by Gustafsson (2000) and used in 
Chapter 7 could be adapted as a performance measure that is based on alarm 
detections, which are practically attainable. In the original setting, tuning is 
done by successively changing the alarm threshold until the desired false 
alarm rate is obtained. In an on-line setting, the occurrence of false alarms is 
used as proxy for the methods sensitivity to detect faults. The threshold is set 
at the maximum acceptable false alarms level. Then, performance assessment 
is conducted by assessing the ratio between the number of true detections and 
the number false alarms. Note the difference between the number of false 
alarms and the false alarm rate. Such performance measure, it can be called 
relative detection frequency, could be used without additional efforts on-line 
for an iterative tuning and performance assessment. 

Dedicated validation experiments can still be used on-line, which comes 
with the same efforts for annotations as during the experiments here. These 
efforts could be motived for sensor errors that are simple to imitate as in Chap-
ter 3, and don’t have negative impact on the treatment process. 

9.6 Characteristic challenges for WRRF fault detection  
It is observed from the results that the WRRF, as a data producing source, 
exhibits some characteristics that indicate both challenges and opportunities 
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for fault detection. In this section I highlight these characteristics, which 
should be considered while developing FDMs. The described characteristics 
can also serve as a roadmap to identify useful methods, based on how well 
they can deal with the following challenges and opportunities.  

Challenges 
 

• Noise in data. 
Data from WRRFs can be perceived as noisy due to the variation 
mentioned in Section 1.3.2. This can reduce the precision in model 
predictions (Chapter 5). Variations from unpredictable influent var-
iations and sensor disturbances needs to be considered as a general 
challenge for obtaining training data, tuning the method and for per-
formance assessment. 

• Missing data.  
As in most industrial processes, WRRF data are not complete and 
about one or a few percent of the sensor values do not reach the 
database. This can be caused by transferring issues or problems in 
the sensor data collection procedure. In addition, sensor disturb-
ances, such as in the flow measurements in Chapter 4, can produce 
anomalies that are beyond doubt biased and therefore unusable. 
Such measurements can in practice be regarded as missing data, 
which makes the challenge with missing data more prevalent. 

• Small annotated training datasets.  
The studies here emphasized the challenge to obtain training data, 
both from the normal and faulty mode. The non-stationarity of the 
WRRF process makes it even more complicated to obtain training 
data that are representative for the full range of seasonal and oper-
ational conditions (like dry and storm weather conditions). The lim-
itation to small training datasets, in turn, makes tuning of FDMs to 
challenging task (Chapter 7). 

• Lacking knowledge about sensor faults.  
The impact from sensor faults on data, in the viewpoint of drift, 
bias, miscalibration, impact from fouling, sensor wear and their fre-
quency, is not generally understood (Chapter 3). This is a limitation 
for tailoring FDMs to detect faults. 

Opportunities 
 

• Slow WRRF process dynamics.  
Slow process dynamics (on the order of minutes to days) makes 
FDMs less time critical and allows time-consuming computations 
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in real-time. Such time-consuming computations could, for exam-
ple, be model simulations or computationally demanding machine 
learning methods. 

• Periodic patterns.  
The influent variations are not only a challenge, but also pose op-
portunities. The different periodic influent variations are reflected 
in the WRRF processes, which in theory provide information about, 
for example correlated data patterns. This information could be 
used to distinguish sensor disturbances from process variations. So 
far, and to the best of my knowledge, the literate lack examples that 
make explicit and efficient usage of these patterns. 

• Robust treatment process.  
The common activated sludge process is robust as it can manage 
large influent variations. For this reason, the process can be sub-
jected to short manual disturbances that produces tailored diagnos-
tic information. 

• Redundant processes.  
Many WRRF processes operate in parallel or serial along with the 
related instrumentation and measurements. This allows multiple 
comparisons to detect deviating sensor and/or process behaviour. 

• Detailed process knowledge.  
The activated sludge process has been extensively studied for long, 
and have also been encoded in dynamic process models (Henze et 
al. 1987). This knowledge has not yet come to fruition in terms of 
monitoring (Newhart et al. 2019). 

• Open data.  
Wastewater treatment is not a competitive business area, at least in 
Sweden, which allows sharing data. This can be beneficial for de-
veloping, for example, probabilistic one-class classification meth-
ods that rely on normal datasets. 

Ultimately, a robust fault detection procedure could include more than one 
method. The detection rate can be improved, and the false alarm rate lowered 
by combining several methods that are independent in relation to which data 
they use. This can be conducted when the conditional probabilities for a fault, 
given different methods, are combined using a naïve Bayes model. This is in-
line with how several different (and independent) medical diagnostic tests are 
used to make a diagnose more accurate (Bishop 2006). For that reason, one 
may not choose between purely data-driven machine learning methods or 
mechanistic grey-box modelling, but instead combine them and interpret their 
joint output. In addition, data can be obtained from independent data produc-
ing processes when deliberate disturbances are used as in Chapter 6 and 10. 
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9.7 Practicability of fault detection methods 
Wastewater research is applied by definition, and its purpose is to improve 
how we treat our wastewater. Any research output should therefore target use-
fulness in the water utilities, as well as increase the knowledge in the domain. 
From that perspective it is surprising that less than one percent (2 out of about 
500) of the research articles between 1980–2017 targeting fault detection for 
WRRFs were evaluated with a full-scale implementation (Samuelsson 2017). 

The gap between state-of-the-art methods published in literature and their 
practical adoption has been acknowledged since long (Olsson et al. 1989). 
Even today, the lack of on-line implementations in literature is reflected by 
the absence of FDM usage by practitioners. For example, data reconciliation 
methods are commercially available and have been applied in many industries 
(Câmara et al. 2017) and have been demonstrated to be useful also for WRRFs 
(Le 2019, Puig et al. 2008, Spindler 2014), but there has been no widespread 
adoption and only a few full-scale implementations such as (Lumley 2002). 
Other FDMs that have been prevalent in the WRRF literature include Principal 
component analysis (Rosén 2001, Rosén et al. 2003) and predictive soft-sen-
sors (Haimi et al. 2015) as indicated by Corominas et al. (2018). These meth-
ods have neither reached practitioners and daily operations, which raises the 
question 

“What is limiting a widespread adoption of fault detection methods in WRRF 
applications?” 

A number of challenges that limit adoption of fault detection have been sug-
gested including the following 
 
• Lack of education and knowledge about statistical methods. 

This was suggested by Rosén et al. (2003) and has also been emphasized 
as barrier for adopting analogous methods such as advanced instrumenta-
tion, control and automation (ICA)-methods by Olsson (2006). 

• Lack of economic incentives. 
This has been recognized as a limiter for adopting online control (Yuan et 
al. 2019). Coping with effluent permits is priority, and reduced operational 
costs are not the main driving force, which potentially could be reduced 
with improved sensor accuracy enabled by FDMs. 

• Mismatch between the current and desired fault detection performance.  
The methods in Chapter 7 could successfully detect a 0.5 mg/L bias. How-
ever, an earlier detection would have been need to use the indications for 
condition based maintenance and correction without a negative impact on 
the process. Similarly, the data reconciliation and gross error detection in 
Chapter 4 missed sensors with large bias (> 50%). This needs to be im-
proved, for FDMs to be valuable in practice. 
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• Lacking incentives to bridge the detection performance gap.  
The research in Chapter 3 and 7 can be said to have increased the technol-
ogy readiness level (TRL) from TRL 4 to TRL 6 (see Li et al. (2019) for 
the TRL concept). Most published FDMs are similarly at TRL 6 (proto-
type demonstration in relevant environment). From a research perspec-
tive, low TRL means high novelty and is therefore a higher driving force 
than research replication. At the same time, the interest from commercial 
actors have been low to push the TRL, given the few commercially avail-
able FDM software’s. 

• The social context.  
Adoption of evidence-based care in practice was studied in (Grol and 
Wensing 2004) where aspects of the social context were suggested to im-
pact the adoption rate of new knowledge. These aspects included dedica-
tion and incentives to adopt new methods and the leadership. Analogous 
studies are yet to come in a WRRF context, but I expect similar challenges 
between the not-for-profit utility and care unit. 

• Software and data integration.  
Rigid technical data structures make it difficult to annotate data, integrate 
different data sources, and implement advanced computations in real-
time. Cyber security and robust performance certainly motivate robust IT-
systems, although they may reduce the adoption rate of data-driven deci-
sion support.  

Answering these wide questions is outside the scope for this thesis. The an-
swers are likely both technical and non-technical. In addition, many of the 
hypothesized barriers were identified by researchers trained in the natural sci-
ences, which may therefore be biased. The perspectives from social sciences, 
including economists, would be valuable to reveal insights into what main 
barriers that limit an introduction of fault detection methods to practice. This 
question is important on its own, because clearly defining the barriers could 
guide future development of FDMs towards a larger impact on current prac-
tices. Ultimately, I stress that we should not be discouraged about this vast 
array of challenges. Their solutions pose excellent opportunities to improve 
the way how FDMs can improve wastewater treatment. 
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10 Conclusions and future work 

I finalize this thesis with a chapter containing some general conclusions and 
suggested topics for future research. For a complete description of the conclu-
sions from this thesis it is suggested to revisit the conclusions in the preceding 
chapters. 

10.1 Conclusions 
The main goal with this thesis was to improve data quality by applying FDMs 
and thereby enable correction of detected faults. Many of the tested methods 
were successful and revealed insights into sensor and process faults. The re-
sults, however, also indicated that an initial poor data quality induced by, for 
example, insufficient sensor maintenance, may complicate fault detection. 
Thus, it is recommended to combine condition-based sensor maintenance and 
fault detection to iteratively improve the data quality. 

This thesis demonstrated practical opportunities and challenges in applying 
data-driven fault detection in WRRFs. Further, the results have increased the 
understanding about how sensor faults impact the treatment process, and how 
faults in a wide range of applications can be detected by analysing data. Spe-
cifically, three 6-18 months long experiments on pilot and full-scale plants 
revealed insights into known and unknown sensor and process disturbances 
and condition-based maintenance of diffusers. The observed sensor faults in-
cluded damaged and fouled dissolved oxygen sensor membranes, and humid 
and fouled airflow rate sensors. Additionally, indications of drift direction due 
to fouling were identified in a nitrate and chemical oxygen demand sensor, 
two types of dissolved oxygen sensors, and an ammonium sensor. The im-
portance of understanding sensor drift direction to maintain a resource effi-
cient operation was demonstrated by process simulations, which has not been 
emphasized previously in literature or practice. A few of the indicated process 
disturbances were influent load variations, uneven load distribution in parallel 
treatment lines, changed respiration rate and aeration efficiency, a syphon ef-
fect in the nitrate recirculation, insufficient sludge sedimentation, and reduced 
denitrification and nitrification rates. These important and wide insights were 
obtained by analysing the output from several detection methods, many of 
which had not previously been applied in a WRRF context. The made insights 
underline the usefulness of analysing data through fault detection methods, as 
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these more informative data can be used for improving operational decision 
support. 

Deliberate sensor and system disturbances (excitations) were shown useful 
for detecting fouling and faults in a dissolved oxygen sensor, and to facilitate 
grey-box model estimation that was used for diffuser condition monitoring. 
These disturbances increased the signal-to-noise level, where the noise was 
commonly large in the studied system due to influent variations that were re-
flected in data. Thus, such deliberate disturbances in sensors circumvented the 
difficult problem to distinguish sensor disturbances from process disturbances 
and is therefore a promising approach for WRRF applications. Similar meth-
ods, denoted active fault detection, have been applied in other applications, 
but seldom on a real system or in a WRRF context. 

Training and tuning the alarm threshold in a fault detection method was 
confirmed to be an essential step to obtain good detection performance. Prob-
abilistic one-class classification methods were shown to facilitate this, alt-
hough simple methods showed similarly good performance in many of the 
studied problems. This result demonstrates the value of benchmarking new 
methods with simple methods. At the same time, all methods were limited by 
small normal training datasets, and in particular, the data-driven machine 
learning methods. A mitigating solution to this problem was proposed for sen-
sor fault detection, by using information about the sensor maintenance. 

The majority of the studied methods were evaluated on real processes and 
are therefore applicable for usage in practice, although more research is de-
sired to improve their detection performances. Many of the results replicate 
the usefulness of data-driven methods in the context of WRRF fault detection. 
This is important since few examples exist with long-term studies on full-scale 
processes. 

10.2 Future work 
The research in this thesis has increased the knowledge and answered (a few) 
questions related to fault detection in WRRFs. An abundance of new and un-
answered research questions has emerged from the studies, which demon-
strates the need to further explore how data can be analysed to detect faults in 
WRRFs. A priority should be given to bridge identified knowledge gaps that 
are (fairly?) straightforward to obtain in practice (Section 10.2.1). Finally, I 
suggest some topics for what I think would be relevant future studies (Section 
10.2.2). 

10.2.1 Identified knowledge gaps 
This thesis has demonstrated knowledge gaps that are needed to be closed in 
order to improve data quality and enable fault detection. Basic knowledge 
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about sensor behaviour - drift and accuracy - in a realistic environment needs 
to be completed for the sensor types used in WRRFs. This also includes the 
prevalence of sensor drift and bias at different sensor maintenance routines. 

To assess sensor accuracy, the variance and bias error composition of la-
boratory samples needs to be better understood. 

Knowledge in the form of annotated datasets are needed for different sensor 
fault modes, which should not be limited to sensor drift and bias. 

Methods that facilitate and automate the collection and identification of an-
notated data are important IT-tools that are needed. 

10.2.2 Suggested topics for future studies 
Knowing the unknowns in Section 10.2.1 would enable the relevant studies 
of: i) How sensor maintenance and calibration can be optimized to produce a 
data quality that balance resources (human efforts and natural resources) and 
effluent water quality, and ii) How probabilistic one-class classification meth-
ods can be applied with improved annotated data. In terms of sensor fault de-
tection, the inclusion of rare sensor faults for improved tuning (resembling 
supervised classification by contrast to one-class classification) would be an 
attractive opportunity to study. 

Simple deliberate perturbations for improved diagnostic information con-
tent is an area of research worthwhile continuing, and specifically, how such 
can simplify normal mode identification. This would be especially useful for 
sensor fault detection, which does not disturb the treatment process. 

How existing dynamic process models can be used for fault detection, pos-
sibly in combination with pattern recognition, is an interesting topic that 
should be further explored. The mechanistic grey-box modelling was promis-
ing for describing changes in diffuser condition, but mechanistic models for 
fault detection in WRRFs have been less studied than purely data-driven 
(black-box) methods. 

The influent daily and seasonal patterns have in general been a challenge. 
How these stochastic, but still partly predictable, patterns better can be mod-
elled with probabilistic methods would be a useful component of many FDMs. 

The studies in Chapter 2-8 also leaves some unanswered questions that 
could direct future studies. These suggestions are not repeated here, and it is 
recommended to revisit the previous chapters for these suggested studies. 

Finally, a qualitative research study considering the social context would 
be valuable as complement the technical studies in revealing the root cause 
barriers for bringing out the values of fault detection into practice. 
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11 Supplementary materials 

This chapter contains supplementary data and illustrations related to the Chap-
ters 3,4,5,7, and Chapter 8. 

 





S3.1 – Fault signatures and bias progression in dissolved 
oxygen sensors 
 
This section provides supplementary information about experimental details in Chapter 3. 

MATERIAL and METHODS 

Experimental set-up 
Figure 1 is a photo of the experimental set-up in Henriksdal WRRF. 
 

 
Figure 1. Sensor rods with two test sensors (a-b) and one rod for references (c). Air compressor (d), 
sensor signal processing units (e), and data collection hardware (f). 

Data pre-processing 
During the artificial fouling experiments in Henriksdal WRRF the data were down-sampled 
from 8 Hz to 1 Hz in two steps. Firstly, a low pass filter (anti-alias filter) was applied and 
secondly the data were decimated (i.e. using only every 8th sample). Figure 2 illustrates the 
down-sampling for one of the impulses. 
  

a) b) c) 

d) 

e) 
f) 



%
%

%
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B1,45/,1%+-<1%<1+:52%
R1*5K%-,%(%,-<4*1%=)/;+-5/%+:(+%;(*;)*(+1,%+:1%01,45/,1%+-<1N%;5/,-210-/.%+:(+%+:1%-/4)+%2(+(%
:(61%+:1%,41;-=-;%,+0);+)01%5=%QU,%31=501%(/%-<4)*,1%(/2%QUU,%-/%+5+(*%*1/.+:#%
%
function [tc] = TimeConstant(yvec)
% Calculates the time constant, 63%, for one impulse. 
% yvec should be 1Hz and 20s measurement before impulse, total 
length 200s 
 
init=mean(yvec(15:19)); 
peak=max(yvec); 
tcval=0.63*(peak-init)+init; 
  
thigh=find(yvec>=tcval,1); % first second above thresh. 
tlow=thigh-1; 
  
% Round off and find closest second to tc 
if tlow==0 
    tc=-1; % indicate no found time impulse 
elseif (yvec(thigh)-tcval)/(tcval-yvec(tlow))>=1
tc=tlow-20; 
elseif (yvec(thigh)-tcval)/(tcval-yvec(tlow))<1 
tc=thigh-20;  
else 
    % some kind of error 
    error('error in function TimeConstant') 
end 
  
end 
%



RESULTS 

Variations in references measurements during initial measurements 
Part of the first fouling procedure is shown in Figure 3 where large variations in the reference 
sensors (compared to the clean and fouled test sensors) are evident. It is also clear that the 
bias (the difference between test sensor and reference sensors) for both the clean and fouled 
test sensors is larger than the desired 0.2 mg/L. 
 
A detailed comparison of the variations for the two references show that they coincide, 
thereby indicating that they are an effect from variations in the measured media, and are not 
due to sensor measurement noise (Figure 4).  
 
 
 

 
Figure 3. Raw data (8Hz) showing DO measurements as function of time for part of the initial fouling 
experiment. 
 

 
Figure 4. Close-up of Figure 3 and the variation patterns for the two reference sensors. DO 
measurements as function of time. 
 
During the second experiment, which was conducted at the same location, the variations in 
the reference measurements decreased at the same time as the bias decreased for the clean test 



sensor, see Figure 5. Recall that the bias was obtained as the difference between a test sensor 
and the WLS-estimate from the two reference measurements.  
 
The correlation between the decreasing variation in the references and the bias is further 
detailed in Figure 6 where the variance for one reference sensor within a moving average 
window (15 minute wide window) is shown together with the bias. 
 

 
Figure 5. Second experimental data-set where the variation for the reference sensors decrease. Dashed 
line show borderline between discarded data and retained data used for further evaluation. DO 
measurements as function of time. 
 
 

 
Figure 6. Moving variance for one reference sensor (black solid line) and bias (blue dashed line) as 
function of time for data in Figure 5. Vertical black dashed line show borderline between discarded 
and data used for further evaluation. 
 
The last part of the data set exhibited characteristics equivalent with the subsequent data sets 
that did not show a bias for the clean test sensor, see Figure 7. 
 



  
Figure 7. References and clean sensor for data-set with no bias and no variation in reference 
measurements. DO measurements as function of time. 
 
We were not able to explain the initial variation in reference measurements as no deviating 
process conditions in hydraulic parameters such as influent flow or air flow were evident, see 
Figure 8.  
 

 
Figure 8. Process data: influent (Qin), total air flow to line 2 (Qair-tot), air flow to zone 5 line 2 (Qair-
z5), and dissolved oxygen measurement (DO) from existing sensors in Henriksdal WWRF during the 
time period during after the large variations in reference measurements. The purpose of the figure is to 
illustrate the qualitative patterns of process parameters relevant for the DO concentration. 
 
Based on the initial experimental data and the uncertainties about the reason for the variations 
in the reference measurements that likely caused the bias, we decided to only use the data 
where the references showed similar characteristics as the subsequent data sets (that did not 
contain variations in the reference measurements). The borderline between discarded and used 
data is indicated with vertical dashed line in Figure 5. 

Kink on air-supply hose 
There was an accidental kink on the air supply hose to the OPT-sensor during cleaning in the 
end of Period 5. The MEC reference sensor obtained an increase in air since the two sensors 



have a common air supply. However, there was no change in response time value despite the 
altered IR, see Figure 9. 
 

 
Figure 9. Effect on IRs from a kink on the air supply hose to the OPT sensor. Note that the response 
time (red circles) did not change despite the change IR peak value.  

Damaged sensors 
Figure 10 and Figure 11 illustrate the deliberate sensor damage for the MEC and OPT sensor, 
respectively. 
 

 
Figure 10. Perforation of MEC-sensor membrane with a needle (a) and a screw-driver (b). Note that 
the liquid space inside the membrane was emptied when perforated with a screw-driver. 
 

  
Figure 11. Scratches on fluorophore coating on OPT-sensor with iron brush. Scratches after 2 strokes 
in (a) and 5 additional strokes in (b). 
 
 

a) b) 

a) b) 



Experimental data 
Pre-processed experimental data are provided in MATLAB.mat format to allow 
benchmarking of fault detection algorithms, exploiting the IRs. Three datasets are provided at 
www.ivl.se: 
ArtificialFoulingImpulseData.mat (impulse response data) 
BiofilmFoulingImpulseData.mat (impulse response data) 
BiofilmFoulingTimeSeriesData.mat (time series data “raw data” 1 Hz) 
 
The variable structure for the datasets is described below. All data are free to use under the 
Creative Commons License CC BY 4.0 (for all purposes). 

ArtificialFoulingImpulseData 
MEC: Membrane electrochemical DO sensor 
Sensor condition 
.normal: Clean 
.fouled: Fouled with grease mixture 
.damaged: Mechanically damaged membrane 
.wornout: Repeated air cleaning impulses 
.lowair: one loose air hose to cleaning system 
.chemicalDamage: Harsh chemical cleaning substance 
.highSS: Measuring in return sludge channel 
.lowSS: Measuring in unaerated zone, normal suspended solids concentration (about 3000 
mg/L) 
OPT: Fluorescent DO sensor 
Sensor condition 
.normal: Clean 
.fouled: Fouled with grease mixture 

BiofilmFoulingImpulseData 
.zone5: Zone where the optical DO sensor was studied, MEC-type reference sensor. 
.zone6: Zone where the membrane electrochemical sensor was studied,  MEC-type reference 
sensor. 
.MECtest: Membrane electrochemical DO sensor – test sensor (increasingly fouled) 
.OPTtest: Fluorescent DO sensor – test sensor (increasingly fouled) 
.MECref: Membrane electrochemical sensor – reference sensor (no fouling) 
.time: Datetime time format 
.indicate: Vector indicating active air cleaning impulse (1= active, 0= no cleaning) 
.testPeriod: Period 1-6 as indicated in article 

BiofilmFoulingTimeSeriesData 
.zone5: Zone where the optical DO sensor was studied, MEC-type reference sensor. 
.zone6: Zone where the membrane electrochemical sensor was studied,  MEC-type reference 
sensor. 
.time: Datetime time format 
.data: Matrix containing reference sensor, test sensor, impulse indication, and Not a Number 
(NaN) indications. 
.metaData: Information about data 





 

 





 

 

 



 

 



 

 

S4.2 – Estimated error magnitudes for sensors, laboratory 
measurements, and conversion factors 
This section detail error magnitudes for conversion factors and separately estimated values 
(Table 1), sensors (Table 2), and laboratory samples (Table 3), which were used to define the 
error covariance matrix in Chapter 4. The settings used in Sampling Helper (Rossi et al. 2011) 
are given in Table 4. 
 
Table 1 Error magnitudes for conversion factors and constant (separately estimated) measurements. 

Position Variable name Unit 1 std error Analytical 
error 

Sampling error 

ven      
 Qven m3/s 0.2 - - 

aer      
off      

 Qoff m3/s 0.2 - - 
eff      

 SSeff mg/L 0.15 - - 
 CODeff mg/L 0.25 - - 

was      
 NOwas mg/L 0.13 0.13  
 SS2CODwas - 0.01 0 0.01 
 SS2TKNwas - 0.01 0 0.01 
 SS2FEwas - 0.01 0 0.01 
 SS2TPwas - 0.01 0 0.01 

ps      
 DS2TPps - 0.01 0 0.01 

  DS2FEps - 0.01 0 0.01 
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Table 3. Laboratory samples, their sampling location, and error magnitudes measured in terms of one 
standard deviation of the mean. 

Position Variable name Unit 1 std 
error 

Analytical error Sampling 
error 

in      
 FEinW mg/L 0.24 0.125 0.20 
 TPinW mg/L 0.21 0.05 0.20 
 SAMPLEin     

asp      
 CODaspG mg/L 0.31 0.05 0.30 
 CODaspW mg/L 0.21 0.05 0.20 
 NOaspW mg/L 0.22 0.1 0.20 
 NOaspG mg/L 0.32 0.1 0.30 
 NaspW mg/L 0.21 0.075 0.20 
 FEaspW mg/L 0.24 0.125 0.20 
 TPaspW mg/L 0.21 0.05 0.20 
 PO4aspG mg/L 0.31 0.05 0.30 

z8      
 TPFILTz8G mg/L 0.31 0.05 0.30 
 TPz8G mg/L 0.31 0.05 0.30 
 SSz8G mg/L 0.31 0.05 0.30 

fil      
 CODfilW mg/L 0.21 0.05 0.20 
 FEfilW mg/L 0.24 0.125 0.20 
 TPfilW mg/L 0.21 0.05 0.20 
 NfilW mg/L 0.21 0.075 0.20 
 NOfilW mg/L 0.22 0.1 0.20 

eff      
 CODeffW mg/L 0.21 0.05 0.20 
 FEeffW mg/L 0.24 0.125 0.20 
 TPeffW mg/L 0.21 0.05 0.20 
 NeffW mg/L 0.21 0.075 0.20 
 NOeffW mg/L 0.22 0.1 0.20 

ras      
 NOrasG mg/L 0.61 0.1 0.60 

was      
 TPFILTwasG mg/L 0.43 0.135 0.40 

ext      
 FEext_pre  0.00   
 NextG mg/L 0.42 0.11 0.40 
 TPextG mg/L 0.43 0.135 0.40 
 NHextG mg/L 0.42 0.11 0.40 
 NOextG mg/L 0.42 0.13 0.40 

  CODextG mg/L 0.41 0.05 0.40 
 



 

 

Table 4 Settings used in Sampling Helper to estimate sampling errors. 
 

Weekly lab samples Grab samples Grab sampling 
campaign 

Number of samples 100 1 1 
Sampling strategy Systematic Random Random 
Point selection error 0.01 0.05 0.05 

    
Min/Max/Avg concentration 1/700/200 200/500/300 40e3/90e3/65e3 
Min/max/avg particle size 1e-8/1e-1/1e-2 0.01/0.2/0.1 0.1/0.1/0.1 
Sample size 50mL 500 mL 500mL 
Fundamental sampling error 0.00 0.00 0 

    
Point Materialization error 0.20 0.30 0.4 

    
Flow measurement 0.00 0.00 0 

    
Total sampling error 20.02% 30.41% 40.31% 

 





S5.1 – Gaussian process regression for monitoring and fault 
detection of wastewater treatment processes 
 
This section provides supplementary information about the kernel and GPR-SM settings in 
Chapter 5. 

Kernel parameter intervals 
Kernel structure and parameter intervals with equivalent equation numbering as in original 
paper. 
 

𝑘"#$%&'(𝑥#, 𝑥+, = 𝜃/	exp 4−
(67869,

:

;<::
=    (8) 

 

𝑘>?@A#$'B(𝑥#, 𝑥+, = 𝑘"#$%&'(𝑥#, 𝑥+, + 𝜃D𝜃E	exp 4−
(67869,

:

;<F:
= 	𝜃G; 	cos(

;L
<M
(𝑥# − 𝑥+)) (18) 

 
𝑦(𝑥) = 𝑓(𝑥) + ℇ(𝑥)     (9) 
 
ℇ(𝑥)	~	𝐺𝑃 U0, 𝑘WX(𝑥#, 𝑥+,Y,     𝑘WX(𝑥#, 𝑥+, = 𝜃Z:	I$   (10) 
 
 
 Parameter interval 
Kernel 𝜃/ 𝜃; 𝜃D 𝜃E 𝜃\ 𝜃G 𝜃] 𝜃Z: 

Single kernel, uniform 
prior distribution interval 

1e2 – 
1.5e4 

0 – 
10 

- - - - - 10 – 
5e3 

Combined kernel, uniform 
prior distribution interval 

0 – 1e4 0 – 
1e2 

0 – 
5e4 

0 – 
1e2 

0 – 
1e4 

0 – 
10 

0 – 
1e4 

1 – 
1e5 

 

Settings for GPR-SMC 
 
The following parameter settings were used for GPR-SMC: 
 
N = 40, number of particles 
K = 10, number of MCMC steps 
P = 20, number of batches 





 

 

S7.1 – Automated active fault detection in fouled dissolved 
oxygen sensors 
 
This section contain supplementary materials, which detail and complement the results (and 
statements) in Chapter 7. 

MATERIAL and METHODS 
The settings for the GPR is given in Table 1 along with threshold values for all methods in 
Table 2. 

 

Table 1. Settings for the four GPR variants. 

 GPR1seLL GPR1se GPR2se GPR2ard 
Particles/repetitions (N) 40 
MCMC-steps (K) 

N.A. 
10 

Batches (P) 20 
Parameter interval (uniformly distributed) 
Length scale [0.0  100] [0.0  100],[0.0  100] 
Variance [0.0  100] 
Noise [0.1  100] 
Constant (mean function - - [-10  10] 
Slope (mean function) - - [-10  10], [-10  10] 

 

 

Table 2. Range of alarm threshold values to produce receiver operator characteristics 
(ROC) curves.  

Method Parameter grid 
PEA [(0:0.01:30)] 
RT 

[(0.1:0.1:30)] RTi 
PCAstand. [0.5;0.4;0.35; 0.3;0.25; 0.2;0.1; 0.11; 1e-1;1e-2;1e-3;1e-4;1e-5;1e-6;1e-7;1e-8;1e-

9;1e-10;1e-11;1e-12;1e-13;1e-14;1e-15] 
 

PCAcomb. [0.5;0.4;0.35; 0.3;0.25; 0.2;0.1; 0.11; 1e-1;1e-2;1e-3;1e-4;1e-5;1e-6;1e-7;1e-8;1e-
9;1e-10;1e-11;1e-12;1e-13;1e-14;1e-15] 

GPR1seBF [0: 1e-20;  (1e-15:1e-1:1e40); 1e45;1e50;1e55;1e60] 
 

GPR1seLR [-1e2; (-30:1:30); (30:10:100)] 
 

GPR2se 
[0:0.1:30] GPR2ard 

 

  



 

 

RESULTS 

Evolvement of IR shapes for MEC sensor data 
The Figure 1 to Figure 5 show the variation in the 12 training IRs for Period 1 to Period 5. 
The figures show the results for claim in Chapter 7  

“Their spread in initial DO concentration differed (see Supplementary materials Figure 1-
5), and interestingly, Period 4 with the most false alarms had the smallest spread. To study 
whether training data were representative for normal conditions, we compared the variation 
in the 12 training IRs for all periods. They differed in initial DO concentration (see 
Supplementary materials Figure 1-5), and interestingly, Period 4 with most false alarms had 
the smallest spread.”  

 

Period 1 

 
 

 
Figure 1. Period 1. 

  



 

 

Period 2 

         
 

 
Figure 2. Period 2. 

    



 

 

Period 3 

 
 

 
Figure 3. Period 3. 



 

 

Period 4 

 
 

 
Figure 4. Period 4. 



 

 

Period 5 

 

 
Figure 5. Period 5. Note that the scale of the Y axis in bottom plot is larger than in previous 
plots. 



 

 

 

Intervention on training data 
Three IRs in training data in Period 4 and 5 were replaced with IRs from the following two 
days to increase variation (Figure 6) and decrease variation (Figure 7) in training data. The 
results show what was stressed in the original article: 

“To test the influence of spread in initial DO concentration in training data on false alarm 
rates, we replaced three IRs in the original data, with IRs from the following day in order to 
change the spread in training data. The spread was increased in Period 4 and reduced in 
Period 5 and we then repeated the evaluation (see Supplementary Materials Figure 6-7).” 

 
Figure 6. Increased variation in training data Period 4. 

 

 
Figure 7. Decreased variation in training data Period 4. 



 

 

 

 

Re-evaluation of results with changed variation in training data 
The results in Figure 8 show the change in false alarm rates when the training data were 
changed according to Figure 6 and Figure 7. Note that alarm (upper dots for each method in 
Figure 8) and no alarm (upper dots for each method in Figure 8) are shown with the same 
colours in contrast to the Chapter 7 where false alarms and missed alarms are shown with 
different markers and colours. 

The change in training data gave the expected results for RTi and GP2se with decreased 
false alarm rate in Period 4 and increased false alarm rate in Period 5. The change in 
variation in training data had little or negative impact on the remaining methods. 

The Figure 8 contain the results for the claimed results in the original article:  

“The revaluated results showed that changing the spread in training data had the expected 
effect (see Figure 8 in Supplementary Materials). The GPR2se and RTi decreased false 
alarm rates in Period 4 from 29% and 41%, to 8% and 1% respectively. In period 5 the false 
alarm rates increased from 14% and 6% to 18% and 52% respectively, because of 
decreased spread in training data. Neither PEA nor RT were affected by the change in 
training data. This was reasonable since neither of them used the initial DO concentration 
explicitly in Feature space and they should therefore not benefit from an increased spread. 
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Varying performance for GPR2se 
The results in Figure 9 show the variation in performance for GPR2se and GPR2ard while 
maintaining training- and test data. Thus, the results show that variation in detection 
performances was only due to the stochastic properties within the GPR method. 

Claim in Chapter 7: 
”We repeated the evaluation for GPR2se and GPR2ard 10 times on the OPT sensor data, 
which showed that their performance varied (Supplementary Materials Figure 9). Since it 
was only the tuning that differed between the 10 iterations, we conclude that the varying 
performance for both GPR2se and GPR2ard was an effect of the stochastic properties in the 
method. This was surprising since the particle filter variant of GPR has been shown to 
produce robust results, see (Samuelsson et al. 2017).” 
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Training IRs Dart 

Many of the FD-methods had deviating threshold values for the first iteration in Dart. The 
Figure 10 show the difference in training IRs for the four iterations, where one of the IRs in 
iteration one deviated (red line). 

The results here are the basis for the claim in the original article 

“One IR with a different shape was present in the training data in the first iteration 
(Supplementary Materials Figure 10) and was assumed to be the reason for the deviating 
threshold values 

 

 
Figure 10. Training IRs in the Dart dataset. 

 





 

 

S8.1 – Monitoring diffuser fouling with grey-box 
modelling 
 
These supplementary materials complement Chapter 8 with additional figures of the 
estimated 𝑘"𝑎 for Line 1 and Line 2. 

RESULTS and DISCUSSION 
Estimating 𝒌𝑳𝒂 
A complete set of figures for all positions with 𝑘"𝑎 estimates are shown in Figure 
1(a)-(d). In Chapter 8, only Figure 1(d) is shown as a representative example. 

Note the large occurrence of potentially biased DO sensor measurements in Line 1 
zone 4 (Figure 1(b)), compared to the other positions. 

 

 

 

a) L1z3 



 

 

 

 

 

 

b) L1z4 

c) L2z3 



 

 

 

Figure 1. 𝑘"𝑎 estimates for line 1 and 2, zone 3 and 4 for the different slots in the staircase. 

d) L2z4 
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